From 354a03e71c697367b518d2702c8222e140f75437 Mon Sep 17 00:00:00 2001 From: joaopedrorosadacanesin <jpcanesin@gmail.com> Date: Fri, 16 Nov 2018 11:54:07 +0100 Subject: [PATCH] MVP almost done --- .../__pycache__/dataframe.cpython-36.pyc | Bin 1269 -> 1252 bytes twitterPredictor/twitterCollect/dataframe.py | 3 +- twitterPredictor/twitterCollect/opinion.py | 36 ++++++++++++++++++ 3 files changed, 37 insertions(+), 2 deletions(-) create mode 100644 twitterPredictor/twitterCollect/opinion.py diff --git a/twitterPredictor/twitterCollect/__pycache__/dataframe.cpython-36.pyc b/twitterPredictor/twitterCollect/__pycache__/dataframe.cpython-36.pyc index 1e169cdb07df7a6edb1e6ec52e443e55e2253a02..c9abb0d78d329c2b6221a9c902a1054ffa06b314 100644 GIT binary patch delta 338 zcmey$`Gk|xn3tDJYT>)+*%LWesPHf{Fr+ioG6FFZ5HkZY3lOuWFxIkF)YLGzFvONj zyc#7^!;-~N!=A<3%*e=4!wP1zP4;CJH)YS_s9|hotmQ5Nv6z4?9x#g;$l?XFSb!`( zFbk-=mLJICoII1UPd17<D5N-w)h9DMwfH3y0|UcLW)Q&wBs94uyD(`?E@o0@jG8>1 zX&0l|<RIo=MuW)@m=)c47zLR57`b4O$%wf~0;uN}M|^y4VrE`^{4GA$+}y;x($pN^ z#N?v<JWakRwt~dGl*Hm90iePnkX^SXd$Jhw!}R4P=B5JmP3~q<QW6BovKAC&=9S!H Z$w*C1DG~!|LJ;DU&$1}88*wm#AOIT!RFD7w delta 373 zcmaFD`IVE?n3tF9K>xewZ4)_HsE9E#Fr+ioG6FFZ5HkZY3lOuWFxIkFwAC=UFvQkP zyc(5N!dk<g#n#No$WX(Q#Q<lsg4ygK@j|(9h7`6G))eLx_7skE)>^I-jx5d^#%9J^ zZZL}p$l?LBn1L)_FpCAq;sdi-fh>L?i)(T}W1s9T=Ae+`TdY2r*{Q`ZnHU%tUNVCS z79gR?J=uy$gY6b;K~ZMj<U}SF##@uyn07HrO?G7NWi*<6o>|d@i;;&>fSHex3kI2t zn2Th9ns0H$$LA(y=EcWH@ww*aCgzo<=J+Ni7v<+^^4(%9NX$z~EG`lTDl7t78a3IB v#h4$aFE24S6{v4=1&fk`C`gGA$Uv5i)Wnn`DG(n)NKf9wqR4K{!3cr?8yQ=n diff --git a/twitterPredictor/twitterCollect/dataframe.py b/twitterPredictor/twitterCollect/dataframe.py index 1c0ad01..4cd8243 100644 --- a/twitterPredictor/twitterCollect/dataframe.py +++ b/twitterPredictor/twitterCollect/dataframe.py @@ -37,8 +37,7 @@ def convert_2_dataframe(data): hash_list.append("#"+hash.get("text")) hashtags.append(hash_list) - - print(tweet.retweet_count) + retweets.append(tweet.retweet_count) likes.append(tweet.favorite_count) diff --git a/twitterPredictor/twitterCollect/opinion.py b/twitterPredictor/twitterCollect/opinion.py new file mode 100644 index 0000000..77714df --- /dev/null +++ b/twitterPredictor/twitterCollect/opinion.py @@ -0,0 +1,36 @@ +from collect_candidate_tweet_activity import * +from dataframe import * +from textblob import * + +def categorize_tweets(data,neutral_line): + pos_tweets = [] + neu_tweets = [] + neg_tweets = [] + + for item in data["text"]: + try: + blob = TextBlob(item) + blob = blob.translate(to='en') + except: + blob = TextBlob(item) + + polarity = blob.sentiment.polarity + print(blob) + print(polarity) + if polarity<=neutral_line and polarity >=-neutral_line: + neu_tweets.append(item) + elif polarity > neutral_line: + pos_tweets.append(item) + else: + neg_tweets.append(item) + + return pos_tweets,neu_tweets,neg_tweets + +tweets = get_replies_to_candidate("EmmanuelMacron") +data = convert_2_dataframe(tweets) + +pos_tweets,neu_tweets,neg_tweets = categorize_tweets(data,0.1) + +print("Percentage of positive tweets: {}%".format(len(pos_tweets)*100/len(data['text']))) +print("Percentage of neutral tweets: {}%".format(len(neu_tweets)*100/len(data['text']))) +print("Percentage de negative tweets: {}%".format(len(neg_tweets)*100/len(data['text']))) -- GitLab