Minesweeper SAT Solver: A Constraint Satisfaction Approach to
Minesweeper

Aymane Lotfi, Arthur Vogels
February 23, 2025

1 Introduction

Minesweeper is a classic puzzle game where players uncover cells in a grid without triggering hidden mines.
Each revealed cell displays a number indicating the count of mines in its adjacent cells. Although seemingly
simple, optimal solving can be challenging, especially when guesswork is involved.

In this project, we model Minesweeper as a Boolean Satisfiability (SAT) problem by encoding the game
rules and constraints into a Conjunctive Normal Form (CNF) formula. A modern SAT solver (Glucose3) is
then employed to compute a valid mine configuration. Additionally, an interactive Tkinter GUI allows the
user to play the game by clicking on cells—if a mine is revealed, the game ends; otherwise, safe cells and
their numbers are shown. The interface also provides options to Solve the puzzle automatically or Reset
for a new board.

[Tkinter GUI }

[Game Logic &

Board Generatlon

CNF const/ramt\/ Update Board

SAT Solver Module} CNF Formula (Glucose3
MlnesweeperSAT L SAT Engine

Decoded SN SAT Model
Solution Decoding}

& GUI Update

Figure 1: System Architecture of the Minesweeper SAT Solver..

2 SAT Solver Formalism

In our approach, the Minesweeper board is modeled as a two-dimensional grid
G={(,j)|1<i<n, 1<j<m}

For each cell (4, j) € G, we associate a Boolean variable x;; where:

1, if a mine is present at (¢, 7);
Tis =
* 0, otherwise.

2.1 Local Number Constraints

If a cell (i,7) is revealed and displays a number k& (where 0 < k < 8), it indicates that exactly k of its
neighboring cells contain mines. Let the set of neighbors be defined as:

N(i,j)={p,) €G |Ip—i| <1, |lg—jl <1, (p,q) # (i,4)}-
The corresponding constraint is:
Tpg = k.
(p,@)EN(4,5)
Since SAT solvers require formulas in Conjunctive Normal Form (CNF), we convert this cardinality

constraint into CNF by splitting it into two parts: at least k and at most k.

At Least k: For each subset S C N (i,) with

S| =N, J)| - k+1,
we require that at least one cell in S is a mine:

Vo

(p,9)€S

At Most k: For each subset T' C N (i, j) with

T = k+1,
we ensure that not all cells in T" are mines:
\ g
(p,@)€T

Thus, the full constraint for cell (i, 7) is:

o Y VA PN B VA

SCN(i,5) (p,q)€S TCN(4,5) (p,q)€T
[S|=|N(i,5)| —k+1 |T|=k+1

2.2 Global Mine Count Constraint

Let M denote the total number of mines on the board. The global constraint is:
Z xij =M.
(i,5)€G

This is similarly decomposed into:

Dyiobal = /\ \/ i | A /\ \/ T

Sca (i,j)es TCG (i,5)€T
|S|=|G]—M+1 |T|=M+1

2.3 Complete SAT Instance
The final CNF formula that represents the Minesweeper board is given by:

d = /\ (I)ij A (pglobala
(i,5)eG’

where G’ C G is the set of cells with a known clue.
This CNF formula is then passed to the SAT solver (Glucose3), which searches for a satisfying assignment.
A solution to @ corresponds to a valid mine configuration that satisfies all local and global constraints.

3 System Implementation

3.1 Project Organization
The project is divided into three main modules:
e solver.py: Contains the MinesweeperSAT class and the SAT encoding logic.
e gui.py: Contains the MinesweeperGUI class that implements the interactive gameplay using Tkinter.

e main.py: The entry point that initializes the GUIL.

3.2 Interactive Gameplay

Users can play by clicking on cells. If a clicked cell is safe, its neighbor count is revealed; if a mine is clicked, a
Game Over message is displayed. The Solve button allows the SAT solver to reveal the complete solution,
while the Reset button generates a new board.

Mineswoeper SAT Soiver Minesweeper SAT Solver

1 1 1 1 1
1 g 1 1 =
1 1 1 1 2 2 2 1
2 1 1 2 ¢ 1
2 1 o ¢ 2 1 1

Figure 2: GUI Overview

4 Results and Discussion

4.1 Gameplay Observations

e Safe Cell Reveal: Clicking on a cell with no adjacent mines triggers a flood-fill that automatically
reveals all contiguous safe cells.

e Game Over: Clicking on a cell containing a mine immediately ends the game.

e Solver Functionality: The SAT solver correctly computes a valid configuration based on the number
constraints, and the solution is displayed when the Solve button is pressed.

5 Conclusion

This project demonstrates a SAT-based approach to solving Minesweeper by translating game constraints
into a CNF formula. The detailed SAT formalism, combined with an interactive Tkinter GUI, shows both
the theoretical underpinnings and practical application of constraint satisfaction techniques. The modular
design aids maintainability and provides a solid foundation for future enhancements, such as scalability
improvements or additional game features.

6 Future Work

Potential future improvements include:
e Enhancing scalability for larger grids.
e Incorporating advanced deduction methods to reduce random guessing.
e Adding dynamic difficulty adjustment and high-score tracking.

e Further refining the visual design and user experience.

	Introduction
	SAT Solver Formalism
	Local Number Constraints
	Global Mine Count Constraint
	Complete SAT Instance

	System Implementation
	Project Organization
	Interactive Gameplay

	Results and Discussion
	Gameplay Observations

	Conclusion
	Future Work

