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Outline of the project

The aim of this project is to model and predict volatility of SPY financial time series.
Part I will focus on computing volatility using different methods, mainly range-based
volatility estimators to be able to predict it using classical time series models (ARCH,
GARCH, etc).
Part II will introduce Rough volatility models with their different calibration and prediction
procedures.
Part III will focus on establishing trading strategies using your volatility forecasts.
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Evaluation

Oral presentation + format of the presentation. Presentations are to be handed as pdf files.
Code (commented notebook) must be handed in.
Competences :

Group organization.
Added value.
Critical thinking.
Oral presentation
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Data

The SPDR SP 500 ETF Trust or SPY is one of the most popular funds that aims to track
the SP 500 Index, which comprises 500 large-cap U.S. stocks.
We will focus on SPY end of day Data from 2000 to end 2013.
The data can be found on yahoo finance, which corresponds to opening, closing, high and
low prices of each trading day.
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Evolution of SPY closing prices

Figure – SPY closing prices from 1993 to 2024

CentraleSupélec Volatility modeling and prediction 7



Close-to-close volatility

Close-to-close volatility estimators : Let C1, . . . ,CT be the closing prices of an asset
for T time periods t = 1..T 10.
Then,

σcc,0(T ) =

√√√√ 1
T − 1

T∑
i=2

ln
Ci

Ci−1

is a biased 11 estimator of the asset volatility σ over the T time periods, assuming zero
drift (i.e., µ = 0 ), c.f. Parkinson.
In addition,

σcc(T ) =

√√√√ 1
T − 2

T∑
i=2

(
ln

Ci

Ci−1
− µcc

)2

with µcc = 1
T−1

∑T
i=2 ln

Ci
Ci−1

, is a biased 11 estimator of the asset volatility σ over the T

time periods, assuming non-zero drift (i.e., µ ̸= 0), c.f. Yang and Zhang.
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Range-based volatility estimators

Let be : t = 1..T ,T time periods and
(O1,H1, L1,C1) , . . . , (OT ,HT , LT ,CT ), the opening, highest, lowest and closing prices of
an asset for time periods t = 1..T
Parkinson volatility estimator Parkinson introduces an estimator for the diffusion
coefficient of a Brownian motion without drift that relies on the highest and lowest
observed values of this Brownian motion over a given time period.
When applied to the estimation of an asset volatility, this gives the Parkinson volatility
estimator σP(T ) defined over T time periods by

σP(T ) =

√
1
T

√√√√ 1
4 ln 2

T∑
i=1

(
ln

Hi

Li

)2
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Range-based volatility estimators

Garman-Klass volatility estimator : Garman and Klass propose to improve the
Parkinson estimator by taking into account the opening prices Ot , t = 1..T and the
closing prices Ct , t = 1..T .
This leads to the Garman-Klass volatility estimator σGK (T ), defined over T time periods
by

σGK (T ) =

√
1
T

√√√√ T∑
i=1

1
2

(
ln

Hi

Li

)2

− (2 ln 2 − 1)
(
ln

Ci

Oi

)2
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Range-based volatility estimators

Rogers-Satchell volatility estimator The Parkinson and the Garman-Klass estimators
have both been derived under a zero drift assumption. When this assumption is not
verified for an asset, for example because of a strong upward or downward trend in the
asset prices or because of the usage of large time periods (monthly, yearly...), these
estimators should in theory not be used because the quality of their volatility estimates is
negatively impacted by the presence of a non-zero drift.
In order to solve this problem, Rogers and Satchell devise the Rogers-Satchell volatility
estimator σRS(T ), defined over T time periods by

σRS(T ) =

√
1
T

√√√√ T∑
i=1

ln
Hi

Ci
ln

Hi

Oi
− ln

Li
Ci

ln
Li
Oi
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Range-based volatility estimators

Yang-Zhang volatility estimator The range-based volatility estimators discussed so far
do not take into account opening jumps in an asset prices, that is, the potential difference
between an asset opening price Ot and its closing price Ct−1 for a time period t.
This limitation causes a systematic underestimation of the true volatility. This leads them
to introduce the multi-period 23 Yang-Zhang volatility estimator σYZ (T ), defined over T
time periods by

σYZ (T ) =
√

σ2
ov + kσ2

oc + (1 − k)σ2
RS

)
where : σco(T ) is the close-to-open volatility, defined as

σco =

√√√√ 1
T − 2

T∑
i=2

(
ln

Oi

Ci−1
− µco

)2

with µco = 1
T−1

∑T
i=2 ln

Oi
Ci−1
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Range-based volatility estimators

σoc is the open-to-close volatility, defined as

σoc(T ) =

√√√√ 1
T − 2

T∑
i=2

(
ln

Oi

Ci
− µoc

)2

with µoc = 1
T−1

∑T
i=2 ln

Ci
Oi

σRS is the Rogers-Satchell volatility estimator over the time periods t = 2..T
k is chosen to minimize the variance the estimator.
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Part I summary

Estimate volatility using range-based estimators.
Conduct a statistical study on the efficiency, precision and stability of each estimator.
Predict intraday volatility using usual time series models and conduct a full statistical
comparison study between models.
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Main classes of volatility models

Prices are often modeled as continuous semi-martingales of the form

dPt = Pt (µtdt + σtdWt) .

The volatility process σs is the most important ingredient of the model. Practitioners consider
essentially three classes of volatility models :

Deterministic volatility (Black and Scholes 1973),
Local volatility (Dupire 1994),
Stochastic volatility (Hull and White 1987, Heston 1993, Hagan et al. 2002,...).

In term of regularity, in these models, the volatility is either very smooth or with a smoothness
similar to that of a Brownian motion.
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Rough Volatility model : geometric fOU

We make it formally stationary by considering a fractional Ornstein-Uhlenbeck model for the
log-volatility denoted by Xt

dXt = νdWH
t + α (m − Xt) dt

This process satisfies

Xt = ν

∫ t

−∞
e−α(t−s)dWH

t +m

We take the reversion time scale 1/α very large compared to the observation time scale. This
model is a particular case of the FSV model. However, in strong contrast to FSV, we take H
small and 1/α large. Thus we call our model Rough FSV (RFSV).
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Intraday volatility estimation

We are interested in the dynamics of the (log)-volatility process. We use two proxies for the
spot (squared) volatility of a day :

A 5 minutes-sampling realized variance estimation taken over the whole trading day (8
hours).
A one hour integrated variance estimator based on the model with uncertainty zones
(Robert and R. 2012).

Note that we are not really considering a “spot” volatility but an “integrated” volatility. This
might lead to some slight bias in our measurements (which can be controlled). From now on,
we consider realized variance estimations on the S&P over 3500 days, but the results are fairly
"universal".
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Measure of the regularity of the log-volatility

The starting point of this work is to consider the scaling of the moments of the increments of
the log-volatility. Thus we study the quantity

m(∆, q) = E [|log (σt+∆)− log (σt)|q] ,

or rather its empirical counterpart.
Let us first pretend that we have access to discrete observations of the volatility process, on a
time grid with mesh ∆ on [0,T ] : σ0, σ∆, . . . , σk∆, . . ., k ∈ {0, ⌊T/∆⌋}. Set N = ⌊T/∆⌋,
then for q ≥ 0, we define

m(q,∆) =
1
N

N∑
k=1

∣∣log (σk∆)− log
(
σ(k−1)∆

)∣∣q
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Distribution of log-volatility increments

Figure – The distribution of the log-volatility increments is close to Gaussian.
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Scaling of the moments

Figure – log(m(q,∆)) = ζq log(∆) + Cq. The scaling is not only valid as ∆ tends to zero, but holds on
a wide range of time scales.
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Monofractality of the log-volatility

Figure – Empirical ζq and q → Hq with H = 0.14 (similar to a fBm with Hurst parameter H).
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RFSV prediction formula

We apply the previous formula to the prediction of the log-volatility :

E
[
log σ2

t+∆ | Ft

]
=

cos(Hπ)

π
∆H+1/2

∫ t

−∞

log σ2
s

(t − s +∆)(t − s)H+1/2 ds

or more precisely its discrete version :

E
[
log σ2

t+∆ | Ft

]
=

cos(Hπ)

π
∆H+1/2

N∑
k=0

log σ2
t−k

(k +∆+ 1/2)(k + 1/2)H+1/2

We compare it to usual predictors using the criterion

P =

∑N−∆
k=1

(
log

(̂
σ2
k+∆

)
− log

(
σ2
k+∆

))2

∑N−∆
k=1

(
log

(
σ2
k+∆

)
− E

[
log

(
σ2
t+∆

)])2

where E
[
log

(
σ2
t+∆

)]
denotes the empirical mean of the log-variance over the whole time

period.
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Part II summary

Simulate a rough volatility process and conduct the different empirical tests, mainly the
distribution of log-volatility increments, scaling of the moments and monofractality of the
log-volatility.
Same procedure for real market data.
Study autocorrelation structure : autocorrelation of volatility ? log-autocorrelation of
volatility ? autocorrelation of log-volatility ? With which scaling : ∆ ? ∆H ? ∆2H ?
Predict intraday volatility using Rough volatility modeling and conduct a statistical
comparative study to other approaches.
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How to find a trading strategy

Consider a short/long position on an asset X and trading signal α. A base strategy is to
buy asset X when α > 0 and sell when α < 0.
Compute the returns of your investment and the cumulative P&L.
Use metrics such as Sharpe Ratio and Drawdown.
How about the risk of your strategy ? Can you quantify it ?
You can use your data on SPY as well as your prediction of the volatility to trade VXX.
Another strategy would be to simply trade SPY based on the volatility predictions. You
can use historical data of SPY’s returns and volatility, as well as other indices.
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