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The scheduling and mapping of the precedence-constrained task graph to processors is considered to
be the most crucial NP-complete problem in parallel and distributed computing systems. Several genetic
algorithms have been developed to solve this problem. A common feature in most of them has been the use
of chromosomal representation for a schedule. However, these algorithms are monolithic, as they attempt
to scan the entire solution space without considering how to reduce the complexity of the optimization
process. In this paper, two genetic algorithms have been developed and implemented. Our developed
algorithms are genetic algorithms with some heuristic principles that have been added to improve
the performance. According to the first developed genetic algorithm, two fitness functions have been
applied one after the other. The first fitness function is concerned with minimizing the total execution
time (schedule length), and the second one is concerned with the load balance satisfaction. The second
developed genetic algorithm is based on a task duplication technique to overcome the communication
overhead. Our proposed algorithms have been implemented and evaluated using benchmarks. According
to the evolved results, it has been found that our algorithms always outperform the traditional algorithms.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The problem of scheduling a task graph of a parallel program
onto a parallel and distributed computing system is a well-defined
NP-complete problem that has received a large amount of atten-
tion, and it is considered one of the most challenging problems in
parallel computing [11]. This problem involves mapping a Directed
Acyclic Graph (DAG) for a collection of computational tasks and
their data precedence onto a parallel processing system. The goal
of a task scheduler is to assign tasks to available processors such
that precedence requirements for these tasks are satisfied and, at
the same time, the overall execution length (i.e., make span) is
minimized [29]. Generally, the scheduling problem could be of the
following two types: static and dynamic.

In the case static scheduling, the characteristics of a parallel
program such as task processing periods, communication, data de-
pendencies, and synchronization requirement are known before
execution [18]. According to the dynamic scheduling, a few as-
sumptions about the parallel program should be made before exe-
cution, then scheduling decisions have to be taken on-the-fly [21].
The work in this paper is solely concerned with the static schedul-
ing problem. A general taxonomy for static scheduling algorithms
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has been reviewed and discussed by Kwok and Ahmad [18]. Many
task scheduling algorithms have been developed with moderate
complexity as a constraint, which is a reasonable assumption for
general purpose development platforms [23,17,20,22]. Generally,
the task scheduling algorithms may be divided in two main classes;
greedy and non-greedy (iterative) algorithms [9]. The greedy algo-
rithms only attempt to minimize the start time of the tasks of a
parallel program. This is done by allocating the tasks into the avail-
able processors without back tracking. On the other hand, the main
principle of the iterative algorithms is that they start from an ini-
tial solution and try to improve it. The greedy task scheduling al-
gorithms may be classified into two categories; algorithms with
duplication, and algorithms without duplication. One of the com-
mon algorithms in the first category is the Duplication Scheduling
Heuristic (DSH) algorithm [11]. The DSH algorithm works by first
arranging nodes in a descending order according to their static b-
level, then determining the start-time of the node on the proces-
sor without duplication of any ancestor. After that, DSH attempts to
duplicate ancestors of the node during the duplication time slot un-
til the slot is used up or the start-time of the node does not improve.
However, one of the best algorithms in the second category is the
Modified Critical Path (MCP) algorithm [28]. The MCP algorithm
computes at first the ALAPs of all the nodes, then creates a ready
list containing ALAP times of the nodes in an ascending order.
The ALAP of a node is computed by computing the length of the
Critical Path (CP) and then subtracting the b-level of a node from
it. Ties are broken by considering the minimum ALAP time of the


http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:f.omara@fci-cu.edu.eg
mailto:m_h_banha@yahoo.com
http://dx.doi.org/10.1016/j.jpdc.2009.09.009

14 F.A. Omara, M.M. Arafa / ]. Parallel Distrib. Comput. 70 (2010) 13-22

t), t7, and ty are CP Nodes

Fig. 1. Example of DAG.

children of a node. If the minimum ALAP time of the children is
equal, ties are broken randomly. According to the MCP algorithm,
the highest priority node in the list is picked up and assigned to a
processor that allows the earliest start time using an insertion ap-
proach. Recently, Genetic Algorithms (GAs) have been widely reck-
oned as useful meta-heuristics for obtaining high quality solutions
for a broad range of combinatorial optimization problems includ-
ing the task scheduling problem [29,18]. Another merit of genetic
search is thatits inherent parallelism can be exploited to further re-
duce its running time [5]. The basic principles of GAs were first laid
down by Holland [ 10], and after that they have been well described
in many texts. The GA operates on a population of solutions rather
than a single solution. The genetic search begins by initializing a
population of individuals. Individual solutions are selected from
the population, then are mated to form new solutions. The mating
process is implemented by combining or crossing over genetic ma-
terial from two parents to form the genetic material for one or two
new solutions; this transfers the data from one generation of solu-
tions to the next. Random mutation is applied periodically to pro-
mote diversity. The individuals in the population are replaced by
the new generation. A fitness function, which measures the quality
of each candidate solution according to the given optimization ob-
jective, is used to help determining which individuals are retained
in the population as successive generations evolve [13]. There are
two important but competing themes that exist in a GA search; the
need for selective pressure so that the GA is able to focus the search
on promising areas of the search space, and the need for popula-
tion diversity so that important information (particular bit values)
is not lost [19,7].

Recently, several GAs have been developed for solving the
task scheduling problem, the main distinction between them has
been the chromosomal representation of a schedule [25,6,14,3,16,
26,29]. In this paper, we propose two hybrid genetic algorithms
which we designate as the Critical Path Genetic Algorithm (CPGA)
and the Task Duplication Genetic Algorithm (TDGA). Our devel-
oped algorithms show the effect of the amalgamation of greedy
algorithms with the genetic algorithm meta-heuristic. The first al-
gorithm, CPGA, is based on how to use the idle time of the proces-
sors efficiently, and reschedule the critical path nodes to reduce
their start time. Then, two fitness functions have been applied, one
after the other. The first fitness function is concerned with mini-
mizing the total execution time (schedule length), and the second
one is concerned with satisfying the load balance. The second al-
gorithm, TDGA, is based on task duplication principle to minimize
the communication overheads.

The remainder of this paper is organized as follows: Section 2
gives a description for the model of task scheduling problem. An
implementation of the standard GA is presented in Section 3. Our
developed CPGA is introduced in Section 4. Section 5 presents the
details of our TDGA algorithm. Performance Evaluation of our de-
veloped algorithms with respect to MCP algorithm, and DSH algo-
rithm is presented in Section 6. Conclusions are given in Section 7.

Table 1
Selected benchmark programs.
Benchmarks programs No_tasks Source Note
Pg; 100 [30] Random graphs
Pg, 90 [30] Robot control program
Pgs 98 [30] Sparse matrix solver

2. The model for task scheduling problem

The model of the parallel system to be considered in this work
can be described as follows [18]: The system consists of a limited
number of fully connected homogeneous processors. Let a task
graph G be a Directed Acyclic Graph (DAG) composed of N nodes
n, ny, ns, ..., ny. Each node is termed a task of the graph which
in turn is a set of instructions that must be executed sequentially
without preemption in the same processor. A node has one or
more inputs. When all inputs are available, the node is triggered
to execute. A node with no parent is called an entry node and a
node with no child is called an exit node. The computation cost of
a node n; is denoted by (n;) weight. The graph also has E directed
edges representing a partial order among the tasks. The partial
order introduces a precedence-constrained DAG and implies that
if n; — n;, then n; is a child, which cannot start until its parent
n; finishes. The weight on an edge is called the communication
cost of the edge and is denoted by c(n;, n;). This cost is incurred
if n; and n; are scheduled on different processors and is considered
to be zero if n; and n; are scheduled on the same processor. If a
node n; is scheduled to processor P, the start time and finish time
of the node are denoted by ST(n;, P) and FT(n;, P) respectively.
After all nodes have been scheduled, the schedule length is defined
as max{FT(n;, P)} across all processors. The objective of the task
scheduling problem is to find an assignment and the start times of
the tasks to processors such that the schedule length is minimized
and, in the same time, the precedence constrains are preserved. A
Critical Path (CP) of a task graph is defined as the path with the
maximum sum of node and edge weights from an entry node to an
exit node. Anode in CP is denoted by CP Nodes (CPNs). An example
of a DAG is represented in Fig. 1, where CP is drawn in bold.

3. The Standard Genetic Algorithm (SGA)

Before presenting the details of our developed algorithms, some
principles which are used in the design are discussed.

Definition. Any task cannot start until all parents have finished.
Let P; be the processor on which the kth parent task t; of task t;
is scheduled. The Data Arrival Time (DAT) of t; at processor P; is
defined as:

DAT = max{FT(t, P;}) + c(t;, t)}; k=1, ..., No_parent (1)
where, No_parent is the number of t;’s parents.
Ifi = j then c(t;, ty) equals zero. (2)

The parent task that maximizes the above expression is called
the favorite predecessors of t; and it is denoted by favpred(t;, P)).

The benchmark programs which have been used to evaluate our
algorithms are listed in Table 1.

3.1. The SGA implementation

The SGA has been implemented first. This algorithm is started
with an initial population of feasible solutions. Then, by applying
some operators, the best solution can be found after some gen-
erations. The selection of the best solution is determined accord-
ing to the value of the fitness function. According to this SGA, the
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Fig. 2. Representation of a chromosome.

Table 2
A comparison between roulette wheel and tournament selection.

Benchmark programs Roulette wheel selection Tournament selection

Pgq 301.6 283.7
Pg, 1331.6 969
Pgs3 585.8 5218

chromosome is divided into two sections; mapping and schedul-
ing sections. The mapping section contains the processors indices
where tasks are to be run on it. The schedule section determines
the sequence for the processing of the tasks. Fig. 2 shows an exam-
ple of such a representation of the chromosome. Where, tasks ty, t7,
tg will be scheduled on processor Py, tasks t3, ts will be scheduled
on processor Py, and tasks ty, t, t; and tg will be scheduled on pro-
cessor P3. The length of the chromosome is linearly proportional to
the number of tasks.

3.1.1. Genetic formulation of SGA

Initial population

The initial population is constructed randomly. The first part
of the chromosome (i.e. mapping) is chosen randomly from 1
to No_Processors where the No_Processors is the number of the
processors in the system. The second part (i.e. the schedule) is
generated randomly such that the topological order of the graph
is preserved.

Fitness function

The main objective of the scheduling problem is to minimize
the schedule length of a schedule.

Fitness function = (a/S_Length) (3)

where a is a constant and S_Length is the schedule length which is
determined by the following equation:

S_Length = max(FT[t;]) : i=1,..., Kno_tasks- (4)

The pseudo code of The Task Schedule using SGA is as follows:
Function schedule_length

1. VRT[Pj] =0 /| RT is the ready time of the processors.
2. Let LT be alist of tasks according to the topological order of DAG.
3. Fori = 1toNo_Tasks [/ No_Tasks is number of tasks in DAG
a. Remove the first task t; form list LT.
b. Forj = 1 to No_Processors /] No_Processors is number of
Processors
If t; is scheduled to processor P;
ST[t;] = max{RT[P;], DAT(t;, P;)}
FT[['{] = ST[ti] + Weight[ti]
RT[P;] = FT[t;]
End If
End For
End For
c. S_Length = max(FT)

Example. By considering the chromosome represented in Fig. 2 as
a solution of a DAG that is represented in Fig. 1, the Fitness function
that is defined by Eq. (3) has been used to calculate the schedule
length (see Fig. 3).

P1 p2 p3
0 r tl
5 1 t i f
10 L E ki
15 - b

t,
20 | 3
25 | Ty
30 L

Fig. 3. The schedule length.

3.1.2. Genetic operators

In order to apply crossover and mutation operators, the selec-
tion phase should be applied first. This selection phase is used
to allocate reproductive trials to chromosomes according to their
fitness. There are different approaches that can be applied in
the selection phase. According to the work in this paper, fitness-
proportional roulette wheel selection [12] and tournament selec-
tion [8] are compared such that the better method is used (i.e.,
produces the shortest schedule length). In the roulette wheel se-
lection, the probability of selection is proportional to the chromo-
some’s fitness. The analogy with a roulette wheel arises because
one can imagine the whole population forming a roulette wheel
with the size of any chromosome’s slot is proportional to its fitness.
The wheel is then spun and the figurative “ball” thrown in. The
probability of the ball coming to rest in any particular slot is
proportional to the arc of the slot and thus to the fitness of
the corresponding chromosome. In binary tournament selection,
two chromosomes are picked at random from the population.
Whichever has the higher fitness is chosen. This process is repeated
for all the chromosomes in the population.

Table 2 contains the results for a comparison between these two
selection methods using 4 processors for each benchmark program
listed in Table 1. According to the results listed in Table 2, the
tournament selection method produces schedule length smaller
than that produced by the roulette wheel selection. Therefore, the
tournament selection method is used in the work of this paper.

Crossover operator

Each chromosome in the population is subjected to crossover
with probability x.. Two chromosomes are selected from the pop-
ulation, and a random number RN € [0, 1] is generated for each
chromosome. If RN < ., these chromosomes are subjected to the
crossover operation using one of two kinds of the crossover oper-
ators; that is single point crossover and order crossover operators.
Otherwise, these chromosomes are not changed. The pseudo code
of the crossover function is as follows.

Function crossover

1. Select two chromosomes chrom1 and chrom?2
2. Let RN a random real number between 0 and 1
3.If RN < 0.5 [* operators probability
Crossover_Map (chrom1, chrom2)
Else
Crossover_Order (chrom1, chrom2)

According to the crossover function, one of the crossover oper-
ators is used.

Crossover map

When the single crossover is selected, it is applied to the first
part of the chromosome. By having two chromosomes, a random
integer number called the crossover point is generated from 1 to
No_Tasks. The portions of the chromosomes lying to the right of
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Fig. 4. One point crossover operator.

the crossover point are exchanged to produce two offspring (see
Fig. 4).
Order crossover

When the order crossover operator is applied to the second part
of the chromosome, a random point is chosen. First, pass the left
segment from the chrom1 to the offspring, then construct the right
fragment of the offspring according to the order of the right seg-
ment of chrom?2 (see Fig. 5 as an example).

Mutation operator

Each position in the first part of the chromosome is subjected
to mutation with a probability wu,. Mutation involves changing
the assignment of a task from one processor to another. Fig. 6
illustrates the mutation operation on chrom1. After the mutation
operator is applied, the assignment of task t; is changed from
processor P to processor P;.

4. The Critical Path Genetic Algorithm (CPGA)

Our developed CPGA algorithm is considered a hybrid of GA
principles and heuristic principles (e.g., given priority of the nodes
according to ALAP level). On the other hand, the same principles
and operators which are used in the SGA algorithm have been
used in the CPGA algorithm. The encoding of the chromosome is
the same as in SGA, but in the initial population the second part
(schedule) of the chromosome can be constructed using one of the
following ways:

1. The schedule part is constructed randomly as in SGA.
2. The schedule part is constructed using ALAP.

These two ways have been applied using benchmark programs
listed in Table 1 with four processors. According to the comparative
results listed in Table 3, it is seen that the priority of the nodes by
ALAP method outperforms the random one in the most cases.

By using ALAP, the second parts of the chromosomes become
static along the population. So, the crossover operator is restricted
to the one point crossover operator.

Three modifications have been applied in the SGA to improve
the scheduling performance. These modifications are:

1. Reuse idle time,

Before mutation

P3P Py P; PP Py PPy | titstststotetstyty

After mutation | P3PiPi Pt P2PPsPoPy | titytststatstytsty

Fig. 6. Mutation operator.

Table 3
A comparison between random and order ALAP order methods.
Benchmark programs Random order ALAP order
Pg; 1834 152.3
Pg, 848.5 826.4
Pgs 301.8 293.8

2. Priority of the CPNs, and
3. Load balance.

Reuse idle time modification:

This modification is based on the insertion approach [11] where
the idle time of the processors is used by assigning some tasks to
idle time slots. This modification is implemented in our algorithm
using Test_Slots function. The pseudo code of this function is as
follows:

Function Test_Slots

1. Let LT be a list of ready tasks
2. Initially the idle_time list is empty and S_idle_time = 0, E_
idle_time = 0
3. While the list LT is not empty, get a task t; from the head of the
list
a. Min_ST = o0
b. For each processor P;
If t; is scheduled to P;
Let this_ST be equal to the start time of t; on P;
If this_ST < Min_ST Then Min_ST = this_ST
If the idle_time list of P; is not empty
For each time_slot of the idle_time list
If (E_idle_time-S_idle_time) >= weight [t;]
&& DAT(t;, P;j) < S_idle_time
Then schedule t; in the idle_time and
update the S_idle_time and E_idle_time
Let st_time be the start time of the task ti
equal to S_ideal_time
End If
c. If st_time < Min_ST Then Min_ST = st_time

Example. Consider the schedule represented in Fig. 3. The proces-
sor P; has an idle time slot; the start of this idle time (S_idle_time)
is equal to 7 while its end time (E_idle_slot) is equal to 12. On the
other hand, the weight (tg) = 4 and DAT (tg, P;)=S_idle_slot =7.
By applying the modification, tg can be rescheduled to start at time
7.The final schedule length according to this modification becomes
23 instead of 26 (see Fig. 7).

Chrom1

H T
P3Py Py P3Py Py P3Py Pyt ty taits tr b by tg o
U 4

N

H [
P3P P P; PP P3Py Pty tytaity te ts trtg ty
U

Chrom?2

P3 P3Py Py Po P3Py PP titatatytets trtg to

Fig. 5. Order crossover operator.
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Fig. 7. The schedule length after applying the test_slots function is reduced from
26 to 23.
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Fig. 8. The schedule length after applying the reschedule of the CPNs function is
reduced from 23 to 17.

Priority of CPNs modification:

According to the second modification, another optimization fac-
tor is applied to recalculate the schedule length after giving high
priorities for the (CPNs) such that they can start as early as possible.
This modification is implemented using a function called Resched-
ule_CPNs function. The pseudo code of this function is as follows:

Function Reschedule_CPNs

1. Determine the CP and make a list of CPNs
2. While the list of CPNs is not empty DO
Remove the task t; from the list
Let VIP = favpred(t;, P})
If VIP is assigned to processor P;
Then The task t; is assigned to processor P;
End If

Example. We apply the Reschedule_CPNs function on the schedul-
ing presented in Fig. 7. According to the DAG presented in Fig. 1,
it is found that the CPNs are tq, t7, and tq. Task t; is the entry node
and it has no predecessor and the favpred of t; is task ty. Task t;
is scheduled to processor P;. Also the favpred of tq is tg, but at the
same time it starts early on the processor Ps, so tg has not moved.
The final schedule length is reduced to 17 instead of 23 (see Fig. 8).

Load balance modification:

Because the main objective of the task scheduling is to minimize
the schedule length, it is found that several solutions can produce
the same schedule length, but the load balance between processors
might not be satisfied in some of them. The aim of load balance
modification is that to obtain the minimum schedule length and, in
the same time, the load balance is satisfied. This has been satisfied
by using two fitness functions one after the other instead of one
fitness function. The first fitness function deals with minimizing
the total execution time, and the second fitness function is used to
satisfy load balance between processors. This function is proposed
in [15] and it is calculated by the ratio of the maximum execution
time (i.e. schedule length) to the average execution time over all
Processors.

a _ pi P s b P P p3
0 f, 0 t.
L L ty

5 t4 t5 5 t}
0 B L ofis B
10 [t m 10 17 ° t,

| — L

15 ts » 15 t6
20 20 fy
[T (]

25 LI L | 25 L1 L1

The load balance = 1.326 The load balance = 1.604

Fig.9. According to balance fitness function solution (a) is better than solution (b).
If the execution time of processor P; is denoted by E_time[P;],
then the average execution time over all processors is:

No_processors
avg = E_time[P;]/No_processors. (5)
j=1

So the load balance is calculated as
load_balance = S_Length/Avg. (6)

Suppose that two task scheduling solutions are given in Fig. 9.
The schedule length of both solutions is equal to 23.

Solutiona: Avg= (12+ 17+ 23)/3 ~ 17.33
Load_balance = 23/17.33 ~ 1.326
Solutionb: Avg = (9+ 11+ 23)/3 =~ 14.33

Load_balance = (23/14.33) ~ 1.604.

According to the balance fitness function, solution (a) is better
than solution (b).

Adaptive u, and ., parameters

Srinivas and Patnaik [24] have proposed an adaptive method to
tune crossover rate . and mutation rate u,,, on the fly, based on
the idea of sustaining in diversity in a population without affecting
its convergence properties. Therefore; the rate . is defined as:

— kc (fmax - fC)
(fmax - favg)

and the rate ., is defined as:

_ kin (fnax — fm)
(fmax - favg)

where,

(7)

c

Mm

fmax is the maximum fitness value, f,,, is the average fitness value
fe is the fitness value of the best chromosome for the crossover

fm is the fitness value of the chromosome to be mutated and, k.
and k, are positive real constants less than 1.

The CPGA algorithm has been implemented into two versions:
the first version has been done using static parameters (. = 0.8
and u,, = 0.02), and the second version has been done using
adaptive parameters. Table 4 represents the comparison results be-
tween these two versions. According to the results, it is seen that
by using adaptive parameters (u. and i), one can help prevent-
ing a GA from getting stuck at local minima. So, using the adaptive
method is batter than using static values of . and p,.
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Table 4 Table 5
A comparison between static and dynamic ¢, i, parameters. A comparison between the methods (HD and RD).
Benchmark programs Dynamic parameters Static parameters Benchmark programs HD RD
Pg, 148 152.3 Pg; 493.9 494.1
Pg, 785.6 826.4 Pg, 1221 1269.5
Pg3 288.2 293.8 Pg3 641.2 616.2
a D p2 p3 b ~ p1 p2 P3 than once on the chromosome, only one of the pairs is considered.
0 £ 0 t t t According to Fig. 11, the task t, is assigned to processor P and P,.
t
-t t4 L 3 t ta
> :] ty — 3 t —1 Definition. Invalid chromosomes are the chromosomes that do
10F ts 10k ts 6 t7 not contain all the DAG tasks. These invalid chromosomes might
—— te t, ‘ be generated.
tg tg
15 15 ] Initial population
20k 20 F According to our TDGA algorithm, two methods to generate
o the initial population are applied. The first one is called Random
25 L 250 Duplication (RD) and the second one is called Heuristic Duplication

Fig. 10. (a) Before duplication (schedule length = 21) (b) After duplication
(schedule length = 18).

| (12, Pt P )y, P P |

Fig. 11. An example of the chromosome.
5. The Task Duplication Genetic Algorithm (TDGA)

Even with an efficient scheduling algorithm, some processors
might be idle during the execution of the program because the
tasks assigned to them might be waiting to receive some data from
the tasks assigned to other processors. If the idle time slots of a
waiting processor could be effectively used by identifying some
critical tasks and redundantly allocating them in these slots, the ex-
ecution time of the parallel program could be further reduced [1].

According to our proposed algorithm, a good schedule based on
task duplication has been proposed. This proposed algorithm called
the Task Duplication Genetic Algorithm (TDGA) employs a genetic
algorithm for solving the scheduling problem.

Definition. At a particular scheduling step; for any task t; on a
processor P;
If EST(favpred(t;, P;)) + weight(favpred(t;, P;)) < EST(t;, P})
Then EST(t;, P;) can be reduced by scheduling favpred(t;, P;) to
P;.
! This definition could be applied recursively upward the DAG to
reduce the schedule length.

Example. To clarify the effect of the task duplication technique,
consider the schedule presented in Fig. 10(a) for the DAG in Fig. 1,
the schedule length is equal to 21. If t; is duplicated to processor
P; and P, the schedule length is reduced to 18 (see Fig. 10(b)).

5.1. Genetic formulation of the TDGA

According to our TDGA algorithm, each chromosome in the
population consists of a vector of order pairs (t, p) which indicates
that task t is assigned to processor p. The number of order pairs in
a chromosome may vary in length. An example of a chromosome is
shown in Fig. 11. The first order pair shows that task ¢, is assigned
to processor Py, and the second one indicates that task t3 is assigned
to processor P, etc....

According to the duplication principles, the same task may be
assigned more than once to different processors without duplicat-
ing it in the same processor. If a task processor pair appears more

(HD). According to RD, the initial population is generated randomly
such that each task can be assigned to more than one processor.
In the HD, the initial population is initialized with randomly
generated chromosomes, while each chromosome consists of ex-
actly one copy of each task (i.e. no task duplication). Then, each
task is randomly assigned to a processor. After that, a duplication
technique is applied by a function called the Duplication_Process.
The pseudo code of the Duplication_Process function is as follows:

Function Duplicatin_Process

1. Compute SL for each task in the DAG
2. Make alist S_list of the tasks according to SL in descending order
3. Take the task t; from S_list
4. While S_list is not empty
a. If t; is assigned to processor P;
IF favpred(t;, P;) is not assigned to P;
IF (time_slot(t;, P;) > weight(favpred(t;s, P}))
assign favpred(t;, P;) to P;

According to the implementation results using RD and HD
methodes, it is found that two methods produce nearly the same
results. Therefore, the HD method has been considered in our TDGA
algorithm (see Table 5).

Fitness function

Our fitness function is defined as 1/S-length, where S-length is
defined as the maximum finishing time of all tasks of the DAG. The
proposed GA assigns zero to an invalid chromosome as its fitness
value.

Genetic operators

Crossover operator

Two point crossover operator is used. According to the two
point crossover, two points are assigned to bind the crossover
region. Since each chromosome consists of a vector of task pro-
cessor pair, the crossover exchanges substrings of pairs between
two chromosomes. Two points are randomly chosen and the par-
titions between the points are exchanged between two chromo-
somes to form two offspring. The crossover probability . gives the
probability that a pair of chromosome will undergo a crossover. An
example of a two point crossover is shown in Fig. 12.

Mutation operator

The mutation probability u,, indicates the probability that an
order pair will be changed. If a pair is selected to be mutated, the
processor number of that pair will be randomly changed. An exam-
ple of mutation operator is shown in Fig. 13.
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Chroml (t3, Pz) (tl, Pz)
Chrom 2 (t;, Py) (t3, P))

(ts, P1) (t1, Py)](t2, P2)
(ts, P2) (4, t) [(t2, P1) (11, P2)

Crossover pointl

Crossover point2
Two points 2 and 4 are generated randomly, two point crossover operator produce

Offspringl (3, Py) (t;, Py)

Opsspring2  (t1, Py) (t3, P1) |(ts, P1) (t1, P1) (t2, P1) (t1, P2)

(ts, P2) (ta, t2)4 (t2, Py)

Crossover pointl Crossover point2

Fig. 12. Example of two point crossover operator.

Chrom (t3, P2) (t1, P2) (4, Py) (11, Py) (2, P2)
Offspring (t3, P2) (t1, P1) (t4, Py) (11, P1) (t2, P2)
Fig. 13. Example of mutation operator.
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Fig. 14. NSL for Pg; and MCD 25 and 50.
6. Performance evaluation
6.1. The problem environment

To evaluate our proposed algorithms, we have implemented
them using an Intel processor (2.6 GH) using C++ language. The
algorithms are applied using task graphs of specific benchmark ap-
plication programs which are taken from a Standard Task Graph
(STG) archive [30] (see Table 1). The first two programs of this STG
set consists of task graphs generated randomly Pg, the second pro-
gram is the robot control (Pg,) as an actual application program
and the last program is the sparse matrix solver (Pgs). Also, we con-
sidered the task graphs with random communication costs. These
communication costs are distributed uniformly between 1 and a
specified maximum communication delay (MCD). The population
size is considered to be 200, and the number of generations is con-
sidered to be 500 generations.

6.2. The developed CPGA evaluation

Our algorithm CPGA, and one of the best greedy algorithms,
called the MCP algorithm have been implemented and compared.
Firstly, a comparison between the CPGA and MCP algorithms with
respect to the Normalized Schedule Length (NSL) with different
number of processors has been carried out. The NSL is defined
as [2]:

_ S_Length
Y weight(n)

njeCP

NSL (9)

where S_Length is the schedule length and weight (n;) is the weight
of the node n;. The sum of computation costs on the CP represents
a lower bound on the schedule length. Such a lower bound may

| B CPGA O MCP
15
101
[72]
4 5
o,
2| 4|8 |16|2|4]|8]16
MCD=75 MCD=100

No_Processors

Fig. 15. NSL for Pg; and MCD 75 and 100.

m CPGA o MCP

No_Processors

Fig. 16. NSL for Pg, and two values of p.

m CPGA o MCP

NSL
o B~ ® O

No_Processors

Fig. 17. NSL for Pg; and two values of p.

not always be possible to achieve, and the optimal schedule length
may be larger than this bound.

Secondly, the performance of the CPGA and MCP are measured
with respect to speedup [4]. The speedup can be estimated as:

_T()
TP

where, T(1) is the time required for executing a program on a
uniprocessor computer and T (P) is the time required for executing
the same program on a parallel computer with P processors.

The NSL for CPGA and MCP algorithms using 2, 4, 8, and 16
processors for Pg; and different MCD (25, 50, 75, and 100) are given
in Figs. 14 and 15. Also the NSL for Pg, and Pgz graphs with two
different numbers of p are given in Figs. 16 and 17 respectively.

Figs. 14-17 show that the performance of our proposed CPGA
algorithm is always outperformed MCP algorithm. According to
the obtained results, it is found that the NSL of all algorithms is
increased when the number of processors is increased. Although,
our CPGA is always the best, and it achieves a lower bound when
the communication delay is small.

Figs. 18-21 present the speedup of CPGA, and MCP algorithms
using Pgq, Pg, and Pg; respectively.

According to Figs. 18-21, our proposed CPGA algorithm pro-
vides better speedup than that for the MCP algorithm in most cases.

S(p) (10)
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- == =MCD=25CPGA ---=--- MCD=25 MCP
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Fig. 18. Speedup for Pg; and MCD 25 and 50.
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Fig. 19. Speedup for Pg; and MCD 75 and 100.
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Fig. 20. Speedup for Pg, and two values of p.

Generally, the speedup increases when the number of processors
increases. In some cases the speedup is greater than the num-
ber of processors (i.e. super speedup) [27]. Finally, because of the
communication overhead, the increasing speedup is not generally
linear.

- 4 = p=1CPGA  -- = --p=1MCP
—#&—p=15CPGA ——p=1.5MCP

8

No_Processors

Fig. 21. Speedup for Pg; and two values of p.

m TDGA O DSH
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Fig. 22. NSL for Pg; and CD = 100 and 200.

m TDGA O DSH

No_Processors

Fig. 23. NSL for Pg; and p = 1and 2.
6.3. The developed TDGA evaluation

To measure the performance of the TDGA, a comparison
between our TDGA algorithm, and one of the well known heuristic
algorithms based on task duplication called DSH algorithm has
been done with respect to NSL and speedup.

To clarify the effect of task duplication in our TDGA algorithm,
the same benchmark application programs Pg;, Pg,, and Pgs listed
in Table 1 have been used with high communication delay.

The NSL for TDGA, and DSH algorithms using 2, 4, 8, and 16
processors for Pg; with two values of Communication Delay (CD)
(CD = 100 and 200) is given in Fig. 22. Also the NSL for Pg, and Pg3
are given in Figs. 23 and 24.

According to the results in Figs. 22-24, it is found that our TDGA
algorithm outperforms the DSH algorithm, especially when the
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Fig. 24. NSL for Pg; and p = 1and 2.
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Fig. 25. Speedup for Pg; and p = 1and 2.

number of communications as well as the number of processors
increases.

The speedup of our TDGA algorithm and DSH algorithm is given
in Figs. 25-27 for Pg, Pg,, and Pg3 respectively.

The results reveal that the performance of our TDGA algorithm
has always outperformed the DSH algorithm. Also, the TDGA
speedup is nearly linear, especially for random graphs.

7. Conclusions

In this paper, an implementation of a standard GA (SGA) to solve
the task scheduling problem has been presented. Some modifi-
cations have been added to this SGA to improve the scheduling
performance. These modifications are based on amalgamating
heuristic principles with the GA principles. The first developed al-
gorithm which has been called the Critical Path Genetic Algorithm
(CPGA) is based on rescheduling the critical path nodes (CPNs) in
the chromosome through different generations. Also, two modifi-
cations have been added. The first one is concerned with how to
use the idle time of the processors efficiently, and the second one
is concerned with satisfying the load balance among processors.
The last modification is applied only when there are two or more
scheduling solutions with the same schedule length are produced.

A comparative study between our CPGA, and one of the stan-
dard heuristic algorithms called the MCP algorithm has been
presented using standard task graphs and considering random
communication costs. The experimental studies show that the
CPGA always outperforms the MCP algorithm in most cases.
Generally, the performance of our CPGA algorithm is better than
the MCP algorithm.

The second developed algorithm which is called the Task
Duplication Genetic Algorithm (TDGA), is based on task dupli-
cation techniques to overcome the communication overhead.

= ¢ = p=1 TDGA
== =2 TDGA

- - & --p=1DSH
—%—p=2 DSH

No_Processors

Fig. 26. Speedup for Pg; and p = 1and 2.

- —e- -p=1TDGA
—«—p=2 TDGA

—--m---p=1DSH
— % p=2 DSH

No_Processors

Fig. 27. Speedup for Pg; and p = 1and 2.

According to task duplication techniques, the communication
delays are reduced and then the overall execution time is mini-
mized, in the same time, the performance of the genetic algorithm
is improved. The performance of the TDGA is compared with a
traditional heuristic scheduling technique, DSH. The experimen-
tal studies show that the TDGA algorithm outperforms the DSH
algorithm in most cases.
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