Once you SCOOP, no need to fork

Yannick Hold-Geoffroy
Laboratoire de vision et
systéemes numériques
Département de génie
électrique et de génie
informatique
Université Laval, Québec
(Québec), Canada G1V 0A6
yannick.hold-

geoffroy.1@ulaval.ca

ABSTRACT

This paper presents SCOOP, a new Python framework for
automatically distributing dynamic task hierarchies. A task
hierarchy refers to tasks that can recursively spawn an arbi-
trary number of subtasks. The underlying computing infras-
tructure consists of a simple list of resources. The typical
use case is to run the user’s main program under the um-
brella of the SCOOP module, where it becomes a root task
that can spawn any number of subtasks through the stan-
dard “futures” API of Python, and where these subtasks may
themselves spawn other subsubtasks, etc. The full task hier-
archy is dynamic in the sense that it is unknown until the end
of the last running task. SCOOP automatically distributes
tasks amongst available resources using dynamic load bal-
ancing. A task is nothing more than a Python callable object
in conjunction with its arguments. The user need not worry
about message passing implementation details; all commu-
nications are implicit.

Categories and Subject Descriptors

D.1.3 [Programming Techniques|: Concurrent Program-
ming; H.3.4 [Information Storage and Retrieval]: Sys-
tems and Software—distributed systems

General Terms

Performance

Keywords

Parallel programming, Software libraries, Distributed com-
puting, High performance computing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

XSEDE ’14 July 13 - 18 2014, Atlanta, GA, USA

Copyright 2014 ACM 978-1-4503-2893-7/14/07 ...$15.00
http://dx.doi.org/10.1145/2616498.2616565.

Olivier Gagnon
Laboratoire de vision et
systémes numériques
Département de génie
électrique et de génie
informatique
Université Laval, Québec
(Québec), Canada G1V 0A6
olivier.gagnon.7@ulaval.ca marc.parizeau@gel.ulaval.ca

Marc Parizeau
Laboratoire de vision et
systémes numériques
Département de génie
électrique et de génie
informatique
Université Laval, Québec
(Québec), Canada G1V 0A6

1. INTRODUCTION

Over time, the difficult problems that we want to solve
using computers require constantly growing computational
effort. The performance of current hardware is notably lim-
ited by power envelope considerations, where higher clock
frequencies is no longer an option. Current and future pro-
cessors are going towards massive multicore architectures
that imply a shift in programming paradigms.

Developing solutions to fully exploit parallel hardware is
generally complicated and error-prone. Prototyping paral-
lel programs requires frameworks that implicitly handle the
multiple mechanisms of distributed computing such as syn-
chronization and message passing, while keeping the code
complexity as low as possible.

This paper presents Scalable Concurrent Operations in
Python (SCOOP), a new parallel framework that allows
programmers to exploit distributed resources with minimal
overhead.

Our goal is to harness the power of parallel systems while
keeping development straightforward for the user. Convert-
ing serial code to parallel code should be as simple as pos-
sible while keeping it maintainable and reusable. Future
programming models must be more human-centric than the
conventional focus on hardware or applications [1].

Frameworks should be flexible enough to adapt intuitively
on most problems. It should also take into account the mul-
tifaceted aspect of task complexity: some are set by an
amount of computation while others are bound to various
I/0O events.

2. RELATED WORK

The two most notable standards in parallel programming
are OpenMP and MPI, both available in C/C++ and For-
tran. They primarily propose two different approaches at
parallelism, the first relying on the OS for launching and
communication while the second offers a message passing
protocol enabling distributed computations.

OpenMP [2] defines preprocessor instructions that allow
programmers to easily parallelize a section of his code. These
sections are usually for loops or functions. The key advan-
tage of OpenMP is its simplicity: slightly modifying a serial
code can potentially provide a great performance gain. It is
implemented by most compilers. Under the hood, the com-
piler spawns threads at the beginning of a parallel section,
splits the work among them and kills them once the section

is over.

MPT [11] defines a communication protocol and an API
used for parallel programming. The latest stable standard
version is 2 with ongoing work toward a third version. Its
most widely known implementations are the open source
OpenMPI and MPICH2 available in C/C++ and Fortran as
well as the commercial versions of HP, Intel and Microsoft.
It is available in Python through the mpidpy package.

Aside from these two standards, many other frameworks
exist featuring their own characteristics and views upon par-
allel programming. Some of them have been in existence for
a long time and have a considerable knowledge base and
community.

Charm++ [9] is one of these notable message-driven C++
open source library used notably for molecular dynamics.
An implementation of the MPI standard' has been made
using this library. Its usage is targeted towards tightly cou-
pled, high-performance parallel machines. They define an
executable processing unit as a chare. A characteristic fea-
ture of this library is its advanced object migration facilities,
allowing dynamic relocation of chares. This provides a great
versatility in load balancing, fault tolerance and scaling.

Parallelism is also featured in many other languages. For
instance, Scala®, a language based on Java, offers a collec-
tion of parallel data structures enabling task submission over
multiple threads. These threads are created using either a
Fork-Join or a thread pool model. Many task submission
techniques are supported such as map, foreach, fold, filter
and reduce. Another language geared toward parallel exe-
cution is Julia®. It is designed to consider concurrent and
parallel computations and offers submit-like functionnalities
to execute calls remotely.

A distributed computing approach recently gaining much
attention is Google’s MapReduce [3]. It is composed of
a task distribution phase, named the map, followed by a
reduction phase. In between those two phases, a shuffle
phase is performed to optimize the communication efficiency.
It is currently implemented in Hadoop® and aims at large
datasets which cannot be contained in a single system mem-
ory.

2.1 Parallel frameworks in Python

Python has a growing community of scientific and HPC
users [10]. Its general flexibility makes it a good candidate
for fast prototyping and testing of ideas. This section pro-
vides an overview of the currently available Python frame-
works for concurrent and parallel computing.

Some Python packages allow the use of OS threads and
processes to parallelize execution. Threading can be ex-
ploited using the standard threading module. Threads in
Python have a major performance limitation, however, be-
cause of the Global Interpreter Lock (GIL) that effectively
limits the execution of Python bytecode to a single thread at
a time. To parallelize Python code using processes, one can
use the multiprocessing module® that is part of the stan-
dard library since Python 2.6. It uses multiple processes,
each running a distinct Python interpreter.

http://charm.cs.uiuc.edu/research/ampi/
2http://www.scala-lang.org/
3http://julialang.org/
*http://hadoop.apache.org/

Shttp://docs.python.org/library/multiprocessing.
html

Celery® is a centralized framework that executes tasks
asynchronously using distributed message passing. It sup-
ports multiple backends for communication and execution.
Concurrency can be handled through the multiprocessing,
Eventlet or gevent modules. The communication architec-
ture used by Celery is centralized using a broker to propagate
messages through a pool of workers. The supported commu-
nication backends are either message queuing frameworks,
such as RabbitMQ), or databases like Redis. Configuration,
like broker URL, task serializer method and routing hints
is written in Python. Tasks can be defined with a func-
tion decorator. Celery defines its own API for task creation,
submission and interaction.

The Celery project is primarily used in web applications.
It allows the parallel execution of HTML generation which
improves web requests response time. Another common us-
age is the launch and polling of background tasks during and
after requests.

Configuration may either be done through a configuration
file or embedded in code as in the example. Tasks must be
defined in a separate module to be parallelized.

Celery is an actively developed project which released its
latest stable version, 3.1 in November 2013. It is supported
on the latest versions of Python 2 and 3 as well as Pypy and
Jython.

Another notable parallel Python framework is IPython
Parallel”. Its target audience is scientists who analyze great
amount of data. It uses ZeroMQ to communicate. One of its
distinguishable features is its ability to run a parallel inter-
active interpreter. Its centralized architecture is composed
of a single hub, one or more engines and one or more clients.
The hub is the central element of the architecture: every
other element is connected to it. It keeps track of engines
and clients as well as all task requests and results. Engines
are the processes that execute tasks while clients are the
ones that generates them.

Through a client instance, IPython Parallel provides a di-
rect handle to every available engine (often called worker in
other frameworks). This means that it is possible to execute
a given task on a specific engine by applying the task to its
handle. It also provides a load balancing view which au-
tomatically dispatches tasks to available engines. IPython
Parallel also defines an asynchronous generic data communi-
cation scheme. Since it is possible to directly address specific
engines, it is also possible to send data to them. It is also
the only framework allowing explicit task assignment while
others coercively provide load balancing.

IPython Parallel is actively being developed and is avail-
able on the latest version of Python 2 and 3, as well as Pypy
and most other Python flavors. It supports every major
operating system.

Celery and IPython parallel are both out-of-the-box com-
patible with cloud resources such as Amazon EC2. Also,
cluster schedulers such as PBS or SGE are only supported
by IPython parallel and Jug.

SCOQOP aims to offer a simpler alternative designed for
HPC usage while staying usable on development systems.
As of now, it uses ZeroM(Q to communicate but there is
an ongoing effort to add support of other communication
backends. It also supports major cluster schedulers out of

Shttp://www.celeryproject.org/
"http://ipython.org/

http://charm.cs.uiuc.edu/research/ampi/
http://www.scala-lang.org/
http://julialang.org/
http://hadoop.apache.org/
http://docs.python.org/library/multiprocessing.html
http://docs.python.org/library/multiprocessing.html
http://www.celeryproject.org/
http://ipython.org/

the box. Is it developed with Python 3 while keeping in
mind a support for Python 2.6 and 2.7, which are still used in
HPC systems. SCOOP also simplifies the advanced usage of
distributed resources; for example, launching a distributed
interactive interpreter is a simple 4-line script provided as
an example.

3. SCOOP OVERVIEW

SCOOQOP is built on the premise that converting sequential
code to exploit distributed resources should be as straight-
forward as possible. In a research context, the speed with
which new ideas can be prototyped may be just as important
as minimizing the runtimes necessary for testing these ideas.
Of course, more efficiency means that bigger problems can
be tackled, but reaching high levels of efficiency can quickly
become daunting. An equilibrium is thus needed between
parallel efficiency and ease of parallelization. SCOOP tries
to maximize the latter while performing reasonably well on
the former using a simple application programming interface
(API).

The launching of a parallel application is also part of the
ease of use experience. SCOOP adopts a path similar to
mpirun, where the program is simply passed as a parameter
to a launcher as in: python -m scoop my_program.py. This
executes the launcher which, if needed, connects to remote
resources and launches all of the necessary processes. These
processes, called workers, try to import every symbol de-
fined in the user program and then wait for tasks. Lastly,
a worker which will execute the user’s main program, called
the root task, is launched. The main program is encapsu-
lated in a future and is called the root task.

This launching mechanism allows easy integration with
legacy or serial code but requires a separate top-level script
environment to execute correctly. Failure to do so results in
every worker executing all tasks. The main program must
thus add the usual conditional statement to the main mod-
ule:

1 from scoop import futures

3 if __name__ == "__main__":
4 [...]

and the code block of this statement will be run only by
the worker executing the root task. This requirement is
shared by many other parallel frameworks in python such
as multiprocessing.

To operate on multiple computers, the user must specify
a list of resource hostnames to the launcher. On a cluster
using a scheduler like Sun Grid Engine (SGE) or Portable
Batch System (PBS, Moab, etc.), SCOOP will automatically
discover and use the computing nodes that were assigned to
the job by the scheduler. This feature is only shared by
iPython Parallel.

3.1 SCOOP API

Futures are constructs meant to synchronize concurrent
algorithms. They primarily define proxy objects which con-
tains the promise of a result. The beginning of their execu-
tion is asynchronous and undetermined at creation time. At
the time of object evaluation, their result is either retrieved
if available, or computed otherwise. This concept was first

described by Friedman [5], Hibbard [7] and Baker [8] in the
late seventies. It is now natively supported by several pro-
gramming languages, notably C++11, Java and Python 3.2
(backported to Python 2).

The futures are used as an API reference for SCOOP.
Through the PEP-3148%, they specifies the smallest unit of
parallel work as a task. They also define the possible task in-
teractions such as submission and data retrieval. We believe
that using a simple and standard interface will give SCOOP
an edge on usage simplicity while leaving good flexibility to
experiment with its inner workings.

SCOOP implements its own futures module that provides
an explicit task submission function called submit:

1 futures.submit (func, *args)

This function generates a future that contains a callable -
a function func - and its argments *args. This future will
either be kept for local execution or be serialized and sent
to a remote worker, depending on the current worker load.

Three other functions are proposed to handle implicit fu-
ture generation and submission: map, mapReduce and map-
Scan.

1 futures.map(func, *iterables)
2 futures.mapReduce (mapFunc, reductionOp, *iterables)
3 futures.mapScan(mapFunc, reductionOp, *iterables)

The map function creates and submits for execution multiple
futures using one or more iterables. It is the most common
SCOOP wuse case. This is a drop-in replacement for the
standard Python map function. As such, its results are in
the same order as the elements in the input iterable(s).

The mapReduce function automatically generates a tree-
like task hierarchy, recursively splitting in two the input it-
erables. The reduce operator must accept two arguments as
input and output a single result. The mapScan is the same
operation, but with partial results kept to produce a scan
sequence of results.

These reduce and scan features currently do not imple-
ment the whole MapReduce pattern [3]: they skip the shuffle
step (often called partitioning) which is an important step
of the process for efficient handling of voluminous datasets.
Without the shuffle step, all of the partial results are trans-
mitted, potentially via network, resulting in duplicated band-
width usage that can be problematic if intermediate results
are quite large.

In addition to the submission primitives, SCOOP provides
two synchronization functions: wait and as_completed.

1 futures.wait (future_set, timeout, return_when)
2 futures.as_completed(future_set, timeout)

The first simply waits until the condition specified by ar-
gument return_when or when the specified timeout is at-
tained. Three conditions are available for return_when: ei-
ther the function returns when futures of set future_set are
all completed, even if one raises an exception, or it returns
as soon as the first is completed, including when it raises an

8http://www.python.org/dev/peps/pep-3148

http://www.python.org/dev/peps/pep-3148

exception, or it returns either after the first exception or af-
ter all are completed. The second function, as_completed,
waits on the next available result; its outputs may not re-
spect the order in which the inputs were provided.

In SCOOP, an exception raised by a child task will always
find its way back to its parent task, no matter on which
worker the child and parent are running on, and will es-
calate to the parent of the parent if not processed by the
latter. This feature takes advantage of the powerful ex-
ception features to catch any voluntary (raise statement)
or unintentional (error in code) exception that occurs on a
worker. SCOOQOP then serialize the error message alongside
useful traceback information and used the usual future re-
turn mechanism to propagate it to its parent. Just like a
normal exception, it will backtrack the call stack until the
exception is catched. If the exception is not catched, the
program crashes after displaying the traceback related to
the exception.

SCOOQOP also provides a mechanism to share data between
workers. This allows user-controlled broadcast of Python
data structures, variables and even callables to every worker.
To circumvent synchronization issues, the data is broad-
casted as constants and cannot be changed once it has been
set. This ensures data coherency:

1 from scoop import futures, shared

2 def myFunc(parameter):

3 print (shared.getConst (’myVar’) [2])

4 if __name__ == "__main__":

5 # Set shared constants

6 shared.setConst (myVar={

7 1: ’First element’,

8 2: ’Second element’,

9 3: ’Third element’,

10 b

11 shared.setConst (secondVar="Hello World!")

12 shared.setConst (myFunc=myFunc)

13 # Use the previously defined shared function
14 print (list (futures.map(myFunc, range(10))))
15 # The following line would give a TypeError
16 # because constant re-definition is not allowed
17 #shared.setConst (myVar="Re-definition")

The setConst function assigns identifiers to arbitrary python
object and exports these identifiers to all workers processes.
The getConst function acts as a barrier that will wait for
the requested constant to be received before continuing exe-
cution. This feature is used primarily in two main use cases.
First, to share runtime-generated data that is common to
many tasks, without having to retransmit the data multiple
times. Second, it enables the interactive use of SCOOP by
allowing remote callable definition at runtime.

3.2 Execution and communication

There are two core elements in SCOOP: workers that ex-
ecutes tasks, and brokers that coordinate communications
between workers. In this context, tasks are defined as col-
laboratively scheduled unit of work, represented by futures.
They can be moved to another worker any number of times,
as long as they haven’t started execution. A task can com-
pute, spawn child tasks and wait for child results before

Broker

Il Router
A\ Publisher
\/ Subscriber

v v

Worker

Worker Worker

Figure 1: Broker/Worker interconnect.

continuing execution. While waiting for results, the current
task is halted and another task may begin its execution.
The execution of a halted task can only resume after some
children results are received.

In SCOOP, a task is executed within a greenlet® that rep-
resents a pseudo-concurrent micro-thread implementation.
This module evolved from the Stackless'® Python version
to propose lightweight coroutines. It allows the creation of
coroutines with small computational and memory require-
ments, bypassing the overheads of operating systems.

For communications, SCOOP uses ZeroMQ'!, a lightweight
library for message passing. Figure 1 illustrate the intercon-
nections between a broker process and a number of worker
processes. These processes may run on a single node multi-
core computer, or on a multinode cluster of multicore com-
puters. At the time of launching a SCOOP application, the
user can specify the number of worker processes per node or
per core, or use the default value of one worker per available
core. He can also specify the number of brokers to start, or
use the default of one broker.

The broker process manages two ZeroMQ sockets: one
that implements a router pattern and one that implements
a publisher pattern. For p workers, the router manages p
peer-to-peer sockets and handles the routing. The router
serves tasks to worker processes. The publisher is used for
broadcasting directives to workers, such as shutdown mes-
sages or transmission of shared constants.

Similarly, the workers possess two ZeroMQ sockets: one
router for either pulling or pushing tasks, and one subscriber
for listening to broker directives. The router socket of work-
ers are also used to establish direct connections to other
workers, in order to bypass the broker when returning re-
sults. A maximum number of peer-to-peer connections is
fixed in order to avoid wasting worker resources. Established
connections persist as long as the limit is not reached. Oth-
erwise, least recently used connections are closed to enable
new connections.

3.3 Worker queues

A worker maintains two separate queues of tasks: the
pending execution and the waiting to resume queues. The

%http://greenlet.readthedocs.org/en/latest
Ohttp: //wuw.stackless. com/
Uhttp://zeromq.org/

http://greenlet.readthedocs.org/en/latest
http://www.stackless.com/
http://zeromq.org/

tasks in the pending execution queue have either been spawn
locally by a running task, or have been pulled from the bro-
ker by the worker. Algorithm 1 describes how tasks get
appended to the pending execution queue. A new task gets

Algorithm 1 worker append task algorithm

Let pending represent the pending execution task queue.

Let task be the task being appended to the queue.

Let mintmum_load be the Minimum Load parameter.

if estimated_duration(pending) > minimum_load then
Send task to broker.

else
Append task to pending.

end if

appended locally only if the estimated runtime of the pend-
ing execution queue is below a certain threshold. Otherwise,
it is transferred to the broker and will eventually migrate to
some other worker.

Algorithm 2 describes how tasks get popped from either
the waiting to resume or pending execution queues. This

Algorithm 2 worker pop task algorithm

Let pending represent the pending execution queue.

Let minimum_load be the Minimum Load parameter.

if estimated duration(pending) < minimum_load then
Send request for tasks to broker.

end if

if a task in the waiting to resume queue then
Pop and execute this task.

end if

if no task is available in the pending execution queue then
Wait until a task arrives from the broker.

end if

Execute the next task in the pending execution queue.

algorithm is called each time a running task decides to wait
for some results. This task is halted so that another task
can either resume its execution or start running. It is also
executed at launch on every worker aside from the one exe-
cuting the root task.

Task results are sent back directly to the worker that is
running the parent task. If no direct routing is possible, the
results are routed through the broker.

3.4 Statistics and task categories

In order to make load balancing decisions, workers com-
pile per function runtime statistics of the task they have
executed so far. These statistics enable the prediction of
the task duration and are used to estimate in seconds the
total runtime of the tasks present in the pending execution
queue.

Task categories are defined by the nature of the task and
the size of its parameters. If the callable of two futures
resolve to the same unique identifier, they are considered to
be of the same nature.

Task runtimes are modeled using a log-normal distribu-
tion associated with each task category. For a log-normal
of parameters p and o, the mode e*~7 is used as typical
execution time when analyzing similar pending execution
tasks.

When no category statistic is available for a given task, it
is assumed to have an infinite execution time.

The minimum load parameter is the amount of work (in
seconds) that the worker tries to buffer in order to stay busy
at all times. It needs to be higher than the turnaround time
needed to send a request and receive new work from the
broker. The workers always tries to keep a safe margin of
workload over this threshold.

4. CODE SAMPLES / EXAMPLES

There are several common patterns of parallelism, also
called skeletons [6]. Notably, there is data-level parallelism
which is primarily defined by the map, the fork and the
reduce constructs. Then, there is task-based parallelism that
encompass a higher level of flow execution with skeletons
such as farm and pipe. There is an ever higher level of
abstraction called resolution that proposes approaches to
solve families of methods such as Divide and Conquer.

4.1 Map

The map skeleton is the archetypal parallel primitive. It
executes multiple times a given function with different argu-
ments each time. SCOOP offers this primitive in its futures
module.

For example, a Monte Carlo computation such as the
stochastic computation of m can be implemented sequen-
tially by the following Python code:

1 from math import hypot
2 from random import random

def test(m):

3

4 return sum(hypot(random(), random()) < 1

5 for _ in range(n)

6)

7 def calcPi(repeat, n):

s expr = map(test, [n] * repeat)

9 return 4. * sum(expr) / float(repeat * n)
10 if __name__ == "__main__":

11 print("pi = {}".format(calcPi (3000, 5000)))

To parallelize this example, it suffice to import SCOOP as
previously shown and to replace the standard map of line 8
by the SCOOP map:

8 expr = futures.map(test, [n] * repeat)

4.2 Fork

The fork skeleton consists of calling multiple functions,
each with its own arguments. This behavior is achieved with
SCOOP using the submit function which returns a future.
After calling the wait function on the future, it is possible
to get its result by calling its method result.

4.3 Reduce and Scan

SCOOQP allows two possibilities to implement the reduce
and scan primitives. Once you have mapped a function,
you can reduce it serially on a single worker by calling the
standard functools.reduce function. To implement paral-
lel reduction, it is possible to use the mapReduce or mapScan
functions of SCOOP.

4.4 Farm and Pipe

The Farm skeleton represents a worker bag of tasks: spawned
tasks are sent to workers which execute them. Tasks can be
recursively called or replicated inside a Farm to produce a
task hierarchy. The bag of tasks approach is the built-in
scheduling and load balancing strategy in SCOOP. Using
the map or submit functionalities will effectively produce a
farm or pipe pattern under the hood, depending on how the
user defined its task granularity.

4.5 Divide and Conquer

The Divide and Conguer skeleton is a problem solving
approach that generates a tree-like task hierarchy. This is
a perfect match for SCOOP’s API. A simple example is the
following function that recurses 12 levels down to compute
the number of tree leaves:

1 from scoop import futures

2 DEPTH = 12

3 def recursiveFunc(level):

4 if level ==

5 return 1

6 else:

7 args = [level-1] * 2

s s = sum(futures.map(recursiveFunc, args))
9 return s

10 if __name__ == "__main__":

11 result = recursiveFunc (DEPTH)

12 print ("2°{DEPTH} = {result}".format(**locals()))

This code will spawn two tasks which will themselves spawn
two subtasks each, etc.. This will continue until a depth of
DEPTH is attained. This approach can be used to divide a
given dataset or problem down to its base case.

4.6 Evolutionary Algorithm

Evolutionary Algorithms (EA) are population-based opti-
mization algorithms that consist of individuals being evolved
over generations. Every individual represents a potential so-
lution to a problem which can be mutated or mixed with
some other individuals of the same generation.

DEAP [4] is a Python framework allowing rapid proto-
typing of evolutionary algorithms. Once you have a working
serial DEAP program, parallelizing it using SCOOP is done
as follows:

1 from scoop import futures
2 toolbox.register("map", futures.map)

Every map done by DEAP’s toolbox will then be parallel.
Since DEAP’s built-in eaSimple algorithm uses the tool-
box’s map function to evaluate the fitnesses of all individu-
als, our program automatically became parallel.

A common EA paradigm is the island model where multi-
ple populations evolve separately and exchange individuals
on a regular basis. Each island can be mapped to a task
which itself generates tasks for the evaluation of individuals.
This task hierarchy with a depth of two can be implemented
in DEAP using SCOOP as such:

1 toolbox.register("algorithm", algorithms.eaSimple,

2 toolbox=toolbox, cxpb=0.5,

3 mutpb=0.2, ngen=FREQ)

4 islds = [

5 toolbox.population(n=300) for _ in range(5)

6]

7 for i in range(0O, NGEN, FREQ):

s results = toolbox.map(toolbox.algorithm, islds)

This code first registers the already parallelized eaSimple
to the name algorithm. It then generates the initial islands
and begins its evolution loop, which maps the islands to the
algorithm. As previously mentioned, the toolbox.map func-
tion is an alias to SCOOP’s futures.map. This will create
one SCOOP future per island. The eaSimple algorithm will
create a future for each individual in its island when map-
ping them to their evaluation function.

4.7 Working hosts

The list of working hosts can either be passed as an ar-
gument to the launcher (the --hosts argument) or be in an
hostlist along the number of workers to spawn on it. Hosts
can be defined by their IP address or their DNS names. Here
is an example of host list:

1 desktopl 8
2 desktop2 8
3 10.10.1.7 4

Using this feature allows for easy use of fixed computer
grids. It also can be used to get the resource list allocated
from a custom scheduler.

5. RESULTS

The goal of parallel programming is to engage multiple re-
sources simultaneously on the same job in order to perform
it faster on the whole. SCOOP strives to offer this while
simplifying prototyping and software development. To keep
the framework flexible, it does not require the prior registra-
tion of tasks; in fact, the task hierarchy should be defined at
runtime. Furthermore, computing resources can be added
to the working pool while the computation takes place. The
developer does not need to specify communication between
resources: they are handled automatically by the framework.
All these features induce unknown variables in paralleliza-
tion algorithms. Interpreting these unknowns suboptimally
generates undesired overheads.

We first use the previous Monte Carlo sampling method
for computing the value of 7 to evaluate the performance of
SCOOP on an embarassingly parallel problems. The num-
ber of futures (tasks) created is set to 1800. Each of these
futures performs 4 million tries, accounting for roughly 2
seconds on our test hardware. Scaling results are presented
in figure 2. They are represented in terms of efficiency which
is defined by:

Th
B =
P p-Tp

(1)

where E, is the efficiency on p computing resources. T3
and T, represent respectively the serial and parallel exe-
cution times. The light degradation in performance when
approaching 256 workers can be explained by the low total
execution time, around 14 seconds for 256 workers. Since

the execution time of a future is around 2 seconds, the im-
balance of a single future amounts for almost 15% of the
execution time.

The execution timeline is shown at figure 3. The time
where most workers are not effectively computing is at the
end of the job, where a discrepancy of roughly 2 seconds is
visible. The load imbalance thus represents the work time of
a single task or less. The graphic shows a minimal amount
of idle workers everywhere besides the job end.

100%
90%

80%

Efficiency

70%

60%

50%

1 10 100
Mumber of workers

Figure 2: SCOOP efficiency for computing 7 using
the Monte Carlo sampling method.

Work density

Worker

0

144
time (s)

Figure 3: SCOOP’s work density map for computing
7 on 96 workers using the Monte Carlo sampling
method.

The second benchmarked program contains a tree shaped
task hierarchy. Each task may submit up to four other tasks
up to a depth of 10. The tree contains 2317 nodes, of which
1415 are leaves. Each of these tasks have a different execu-
tion time as shown on figure 4. The efficiency of SCOOP
on this problem is shown at figure 5. The hierarchy depth
map (figure 6) and the time and task distribution (figure 7)
show the load balancing performance of SCOOP on this dif-
ficult job. It is worth nothing that the maximum theoretical
parallel efficiency of this problem decreases when the num-
ber of workers increases because of hierarchichal constraints.

The load balancing is made to optimize the execution time,
which explains the large variance in task distribution and rel-
atively small execution time variance. The hierarchy depth
map represents the number of tasks executing or awaiting
for results at any given time. It gives insights on load dis-
tribution over the pool. A worker keeping a depth of one
means that it only worked on the tree leaves. The higher
the hierarchy depth is for a worker, the more it spawned
tasks.

Task execution time distribution

1000

Tasks

10 12 14 16

Time (s)

Figure 4: Task execution time distribution.

100%

7%

50%

Efficiency

El 16 24 32 40 48 56 64 72 80
Mumber of workers

Figure 5: SCOOP’s Efficiency on the tree program.

Figure 8 shows results from three different setups. The
first one, called local, represents a single worker that keeps all
of its tasks locally. It will not serialize them nor send them
to the broker. The setup called one node represents a single
machine on which two worker processes are running. The
first process runs the root task that spawns all other tasks
that are forced to run on the second worker. This stresses
the loopback interface of the machine. For the two node
setup, we again have two workers, but this time running on
two distinct machines that communicate across a network.
For both figures, tasks are spawn with a variable length
argument in bytes, but the task function itself does nothing

Work density

Worker

-
time (s)

Figure 6: Worker hierarchy depth map of the tree
program on 72 workers.

Number of tasks executed by worker Effective execution time by worker

Figure 7: Task (left) and execution time (right) dis-
tribution of the tree program on 72 workers.

but return its argument to the caller. Execution time is
hence negligible; only communication overheads count.

The figure is done by sending many tasks at once and
dividing the task quantity by the time it took to execute
them.

10°

one node
two nodes
local

10°E

=
o

-
o

Tasks per second

10°F

lorl L L L L L
10° 10° 10° 10° 10° 107 10°
Task size (Bytes)

Figure 8: Task execution throughput

All of the tests were performed using Python 3.3.0, pyzmq
14.0.2-dev and zeromq 4.0.3 on 64 bits Linux machine(s),

each equipped with two Xeon X5560 2.8 Ghz processors and
Infiniband QDR networking. This setup provides 8 real com-
puting cores per node.

6. CONCLUSION

To lessen the overhead of converting a standard program
to its parallel version, SCOOP allows the execution of par-
allel tasks defined in a serial module. In order to do so, it
enforces a top-level script environment delimiter which dif-
ferentiate between the root task code and object definitions
needed on all workers. Some other frameworks require par-
allel tasks to be defined in separate modules to circumvent
this requirement. This increases the adaptation overheads
needed to parallelize standard algorithms.

Parallel programming is an active subject on which mul-
tiple tools are currently being developed. This paper intro-
duced SCOOQOP, a parallel framework in Python striving for
usage simplicity. This framework is still a work in progress
with ongoing development, but it’s already stable enough
with a growing community. While sharing a few common
features with other parallel frameworks, it proposes new
ideas such as time-based statistics. Multiple improvements
are forecast such as out-of-the-box support for cloud ser-
vices, fault tolerance and performance through multiple bro-
kers, network performance awareness and enhancements of
the reduce functionality.

7. REFERENCES

[1] K. Asanovic, R. Bodik, and B. Catanzaro. The
landscape of parallel computing research: A view from
Berkeley. Vol. 2. Technical Report
UCB/EECS-2006-183, 2006.

[2] L. Dagum and R. Menon. OpenMP: an industry
standard API for shared-memory programming.
Computational Science & Engineering, pages 46-55,
1998.

[3] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. Communications of
the ACM, pages 1-13, 2008.

[4] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner,

M. Parizeau, and C. Gagné. DEAP: Evolutionary
algorithms made easy. Journal of Machine Learning
Research, 13:2171-2175, 2012.

[5] D. Friedman and D. Wise. The impact of applicative
programming on multiprocessing. Indiana University,
1976.

[6] H. Gonzélez-Vélez and M. Leyton. A survey of
algorithmic skeleton frameworks: high-level structured
parallel programming enablers. Software: Practice and
Ezperience, pages 1-26, 2010.

[7] P. Hibbard. Parallel processing facilities. New
Directions in Algorithmic Languages, 1976.

[8] H. B. Jr and C. Hewitt. The incremental garbage
collection of processes. ACM SIGART Bulletin, 1977.

[9] L. Kale and S. Krishnan. CHARM++: a portable
concurrent object oriented system based on C++.
ACM, 1993.

[10] T. E. Oliphant. Python for Scientific Computing.
Computing in Science & Engineering, 9(3):10-20,
2007.

[11] M. Snir, S. Otto, and D. Walker. MPI: the complete
reference. MIT press, 1995.

	Introduction
	Related work
	Parallel frameworks in Python

	SCOOP overview
	SCOOP API
	Execution and communication
	Worker queues
	Statistics and task categories

	Code samples / examples
	Map
	Fork
	Reduce and Scan
	Farm and Pipe
	Divide and Conquer
	Evolutionary Algorithm
	Working hosts

	Results
	Conclusion
	References

