diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..c34d28b93db2c6ac9546c53b0fd5a76c8d526611 --- /dev/null +++ b/.gitignore @@ -0,0 +1,2 @@ +__pycache__ +.DS_Store \ No newline at end of file diff --git a/TP3/config/cfg.py b/TP3/config/cfg.py new file mode 100644 index 0000000000000000000000000000000000000000..08fa8d04abcddee3e330c6267f0f3a7dc31f2b06 --- /dev/null +++ b/TP3/config/cfg.py @@ -0,0 +1,144 @@ +"""Control flow graphs + +- Label and its subclasses describe the label on the edges of the CfGs +- Nodes describes nodes, with an id and its successors +- Graph describes a graph +- Cfg describes a cfg, i.e. a graph with initial, final, and error nodes +- function cfg creates a cfg for the given program +""" +from syntax import * +from dataclasses import dataclass + +@dataclass +class Label: + """generic class for edges' labels""" + pass + +@dataclass +class LSkip(Label): + """label skip (does nothing)""" + def __str__(self): + return "skip" + +@dataclass +class LSet(Label): + """assignment label""" + var: str + expr: ArithExpr + def __str__(self): + return f"{self.var} := {self.expr}" + +@dataclass +class LTest(Label): + """test label""" + cond: BoolExpr + def __str__(self): + return f"?{self.cond}" + +@dataclass +class LErr(Label): + """error label""" + err: Expr + def __str__(self): + return f"Err({self.err})" + +class Node: + """node of the graph, with its id and its successors""" + def __init__(self,nid): + self.nid = nid + self.succs = [] + def __str__(self): + return f"Node {self.nid}" + +class Graph: + nb_id: int + nodes: list[Node] + + """a graph, i.e. a list of nodes""" + def __init__(self): + self.nb_nid = 0 + self.nodes = [] + + def new_node(self) -> Node: + """creates a new node, with a fresh id and no succs""" + node = Node(self.nb_nid) + self.nb_nid += 1 + self.nodes += [node] + return node + + def new_edge(self,n1: Node,n2: Node,l: Label) -> None: + """creates a new edge. + If the nodes are not already in the graph, they are added. + In that case, no check is made that a node with the same id + is already present or not. + """ + if n1 not in self.nodes: + self.nodes += [n1] + if n2 not in self.nodes: + self.nodes += [n2] + n1.succs += [(n2,l)] + +def cfg_aux(g:Graph,e:Node,i:Node,instr:Instr) -> Node: + """auxiliary function to build a CfG + takes as argument a graph, the error node, the node starting + the current instruction, and the instruction itself, returns + the final node of current instruction + """ + match instr: + case ISkip(): + f = g.new_node() + g.new_edge(i,f,LSkip()) + return f + case ISet(var,expr): + f = g.new_node() + g.new_edge(i,f,LSet(var,expr)) + g.new_edge(i,e,LErr(expr)) + return f + case ISeq(first,second): + m = cfg_aux(g,e,i,first) + return cfg_aux(g,e,m,second) + case ICond(cond,true_branch,false_branch): + t = g.new_node() + f = g.new_node() + g.new_edge(i,t,LTest(cond)) + g.new_edge(i,f,LTest(BENeg(cond))) + g.new_edge(i,e,LErr(cond)) + tf = cfg_aux(g,e,t,true_branch) + ff = cfg_aux(g,e,f,false_branch) + f = g.new_node() + g.new_edge(tf,f,LSkip()) + g.new_edge(ff,f,LSkip()) + return f + case ILoop(cond,body): + ib = g.new_node() + f = g.new_node() + g.new_edge(i,ib,LTest(cond)) + g.new_edge(i,f,LTest(BENeg(cond))) + g.new_edge(i,e,LErr(cond)) + fb = cfg_aux(g,e,ib,body) + g.new_edge(fb,i,LSkip()) + return f + case _: assert False + +class Cfg: + """describes a CfG""" + g: Graph + err_node: Node + init_node: Node + final_node: Node + def __init__(self,instr): + self.g = Graph() + self.err_node = self.g.new_node() + self.init_node = self.g.new_node() + self.final_node = cfg_aux(self.g,self.err_node,self.init_node,instr) + + def __str__(self): + res = "" + for node in self.g.nodes: + res+=f"{node}:\n" + for (dest,lab) in node.succs: + res+=f" {lab} --> {dest}\n" + res+=f"init node is {self.init_node}\n" + res+=f"final node is {self.final_node}\n" + res+=f"err node is {self.err_node}\n" + return res diff --git a/TP3/config/constant_propagation.py b/TP3/config/constant_propagation.py new file mode 100644 index 0000000000000000000000000000000000000000..a530c34071106acc53ced1ee96915ab2cb9deb93 --- /dev/null +++ b/TP3/config/constant_propagation.py @@ -0,0 +1,107 @@ +""" +implements a constant propagation analysis +""" + +from dataclasses import dataclass +from cfg import Label, LSkip, LSet, LTest, LErr +from iteration import Transfer +from syntax import * + +@dataclass +class abstract_value[T]: + """None indicates that we don't know the precise value""" + value: T | None + def __str__(self): + return f"{self.value}" + +type abstract_env = dict[str, abstract_value[int]] +"""mapping from variables to abstract values. + +As with concrete environment, a variable not in the dictionary will +lead to an error if we try to obtain its value +""" +type state = abstract_env | None +"""abstract state is either an abstract env or bottom +""" + +def eval_aexp(env: abstract_env, e: ArithExpr) -> abstract_value[int] | None: + """evaluate an arithmetic expression in an abstract environment + returns None in case of error + """ + match e: + case AECst(value): return abstract_value(value) + case AEVar(var): + if var in env: return env[var] + else: return None + case AEUop(uop,expr): + res = eval_aexp(env,expr) + if res is None: return None + if res.value is None: return abstract_value(None) + if uop == Uop.OPP: return abstract_value(-res.value) + return None + case AEBop(bop,left_expr,right_expr): + v1 = eval_aexp(env,left_expr) + v2 = eval_aexp(env,right_expr) + if v1 is None or v2 is None: return None + if v1.value is None or v2.value is None: + return abstract_value(None) + match bop: + case Bop.ADD: return abstract_value(v1.value+v2.value) + case Bop.MUL: return abstract_value(v1.value*v2.value) + case Bop.DIV: + if v2.value == 0: return None + return abstract_value(v1.value//v2.value) + case _: assert False + +def eval_bexp(env: abstract_env, e: BoolExpr) -> abstract_value[bool] | None: + """abstract evaluation of a boolean expression""" + match e: + case BEPlain(aexpr): + res = eval_aexp(env, aexpr) + if res is None: return None + if res.value is None: return abstract_value(None) + return abstract_value(res.value!=0) + case BEEq(left_expr,right_expr): + v1 = eval_aexp(env, left_expr) + v2 = eval_aexp(env, right_expr) + if v1 is None or v2 is None: return None + if v1.value is None or v2.value is None: return abstract_value(None) + return abstract_value(v1.value == v2.value) + case BELeq(left_expr,right_expr): + v1 = eval_aexp(env, left_expr) + v2 = eval_aexp(env, right_expr) + if v1 is None or v2 is None: return None + if v1.value is None or v2.value is None: return abstract_value(None) + return abstract_value(v1.value <= v2.value) + case BENeg(expr): + v = eval_bexp(env,expr) + if v is None: return None + if v.value is None: return v + return abstract_value(not v.value) + case _: assert False + +class Constant_propagation(Transfer[state]): + variables: frozenset[str] + def __init__(self,instr): + self.variables = variables_of_instr(instr) + def bottom(self) -> state: + ... + def init_state(self) -> state: + ... + def join(self,s1:state,s2:state) -> state: + ... + + def included(self,s1: state,s2: state) -> bool: + ... + + def tr_skip(self,s: state) -> state: + ... + + def tr_set(self,s: state,v: str,e: ArithExpr) -> state: + ... + + def tr_test(self,s: state,c: BoolExpr) -> state: + ... + + def tr_err(self,s: state,e: Expr) -> state: + ... diff --git a/TP3/config/example_constant_propagation.py b/TP3/config/example_constant_propagation.py new file mode 100644 index 0000000000000000000000000000000000000000..0bf11f1a7a796124d13f8a3ea0e579835985a6d2 --- /dev/null +++ b/TP3/config/example_constant_propagation.py @@ -0,0 +1,29 @@ +from syntax import * +from cfg import Cfg +from iteration import fixpoint_iteration +from constant_propagation import Constant_propagation + +x = AEVar("x") +y = AEVar("y") +c = AEVar("c") +one = AECst(1) +zero = AECst(0) + +propagate_compute=ISeq(ISet("x",one),ISet("x", AEBop(Bop.ADD,x,one))) +same_branch_if=ICond(BELeq(c,zero), ISet("y", one), ISet("y",one)) +equal_branch=ICond(BEEq(c,one),ISkip(),ISet("c",one)) + +prog = ISeq(ISeq(propagate_compute,same_branch_if),equal_branch) + +cfg = Cfg(prog) + +cst_propagation = Constant_propagation(prog) + +res = fixpoint_iteration(cst_propagation,cfg) + +for (node, state) in res.items(): + print(f"{node}:") + if state is None: print(" None") + else: + for (var, value) in state.items(): + print(f" {var} -> {value}") diff --git a/TP3/config/example_interval.py b/TP3/config/example_interval.py new file mode 100644 index 0000000000000000000000000000000000000000..8aa35e01334ffe53cbe00789994a19c11f544c59 --- /dev/null +++ b/TP3/config/example_interval.py @@ -0,0 +1,4 @@ +from interval_analysis import analyze +from example_opsem import factorial + +analyze(factorial) diff --git a/TP3/config/example_interval_eval_exp.py b/TP3/config/example_interval_eval_exp.py new file mode 100644 index 0000000000000000000000000000000000000000..1203cab645be505a71cd14888374824eca277e68 --- /dev/null +++ b/TP3/config/example_interval_eval_exp.py @@ -0,0 +1,32 @@ +from syntax import * +from interval_analysis import eval_aexp, eval_bexp, abstract_env, Interval + +x: ArithExpr = AEVar("x") +y: ArithExpr = AEVar("y") + +# x - y * (x / y) +test_aexp: ArithExpr = AEBop(Bop.ADD,x, AEUop(Uop.OPP,AEBop(Bop.MUL,y,AEBop(Bop.DIV,x,y)))) + +# ! (x - y <= y * (x - x/y)) +test_bexp: BoolExpr = BENeg(BELeq(AEBop(Bop.ADD,x,AEUop(Uop.OPP,y)),test_aexp)) + +def test(env: abstract_env) -> None: + res_a = eval_aexp(env,test_aexp) + res_b = eval_bexp(env,test_bexp) + print(f'In environment { {var: str(i) for (var,i) in env.items()} }') + print(f"{test_aexp} -> {res_a}") + print(f"{test_bexp} -> {res_b}") + +test({ 'x': Interval(20,20), 'y': Interval(2,2) }) + +test({ 'x': Interval(10,20), 'y': Interval(1,2) }) + +test({ 'x': Interval(-30,0), 'y': Interval(-10,0) }) + +test({ 'x': Interval(-20,20), 'y': Interval(0,0) }) + +test({ 'x': Interval(0,20), 'y': Interval(2,5) }) + +test({ 'x': Interval(-10,20), 'y': Interval(-5,-2) }) + +test({}) diff --git a/TP3/config/example_interval_reduce.py b/TP3/config/example_interval_reduce.py new file mode 100644 index 0000000000000000000000000000000000000000..2d7cdda54e9d02cfd00b41b9a65d67b63f5120b9 --- /dev/null +++ b/TP3/config/example_interval_reduce.py @@ -0,0 +1,39 @@ +from syntax import * +from interval_analysis import state, abstract_env, Interval, reduce_state + +x: ArithExpr = AEVar("x") +y: ArithExpr = AEVar("y") + +test_eq: BoolExpr = BEEq(x,y) + +test_neq: BoolExpr = BENeg(test_eq) + +test_leq: BoolExpr = BELeq(x,y) + +test_gt: BoolExpr = BENeg(test_leq) + +def env_str(env: abstract_env) -> str: + return '{ ' + ', '.join([ f'{var}: {i}' for (var,i) in env.items()]) + ' }' + +def state_str(env: state) -> str: + if env is None: return 'None' + return env_str(env) + +def test(env: abstract_env) -> None: + res_eq = reduce_state(env,test_eq) + res_neq = reduce_state(env,test_neq) + res_leq = reduce_state(env,test_leq) + res_gt = reduce_state(env,test_gt) + print(f'In environment { env_str(env) }') + print(f"{test_eq} -> {state_str(res_eq)}") + print(f"{test_neq} -> {state_str(res_neq)}") + print(f"{test_leq} -> {state_str(res_leq)}") + print(f"{test_gt} -> {state_str(res_gt)}") + +test({ 'x': Interval(0,5), 'y': Interval(-5,0) }) + +test({ 'x': Interval(-5,5), 'y': Interval(3,7) }) + +test({ 'x': Interval(0,5), 'y': Interval(-10,-5) }) + +test({ 'x': Interval(0,0), 'y': Interval(0,4) }) diff --git a/TP3/config/example_iteration.py b/TP3/config/example_iteration.py new file mode 100644 index 0000000000000000000000000000000000000000..3a9a71bb66f797cb0a6ac81b285ed1c2a8da2f75 --- /dev/null +++ b/TP3/config/example_iteration.py @@ -0,0 +1,52 @@ +from syntax import * +from cfg import Cfg +from iteration import * +from opsem import eval_bexp, eval_aexp + +one = AECst(1) +zero = AECst(0) +x = AEVar("x") +dead_if=ICond(BEPlain(one),ISet("x",one),ISet("y",zero)) +infinite_loop=ILoop(BEPlain(one),ISet("x",AEBop(Bop.ADD,x,one))) +prog_with_dead_code=ISeq(dead_if,infinite_loop) + +class NoInfo(Transfer[frozenset[bool]]): + """Almost trivial static analysis + + We only have two elements in our lattice, the empty set and the singleton {True}. + The latter is propagated from initial state to any potentially reachable state. + In the end, the only nodes still at bottom are the one which are guarded by + always-false tests. + """ + type S = frozenset[bool] + def bottom(self) -> S: return frozenset() + def init_state(self) -> S: return frozenset([True]) + def join(self, s1:S, s2:S) -> S: return s1 | s2 + def included(self, s1:S, s2:S) -> bool: return s1.issubset(s2) + def tr_skip(self,s:S): return s + def tr_set(self, s:S, v:str, e: ArithExpr) -> S: return s + def tr_test(self,s:S, c:BoolExpr) -> S: + if eval_bexp({},c) is False: + return frozenset() + else: + return s + def tr_err(self, s:S, e:Expr) -> S: + if isinstance(e,ArithExpr): + if eval_aexp({},e) is not None: + return frozenset() + else: + return s + else: + if isinstance(e,BoolExpr): + if eval_bexp({},e) is not None: + return frozenset() + else: + return s + else: assert False + +cfg = Cfg(prog_with_dead_code) +print(f"Cfg is {cfg}") +res = fixpoint_iteration(NoInfo(),cfg) +unreachable = [node for node, state in res.items() if state == frozenset()] +for node in unreachable: + print(f"{node} is unreachable") diff --git a/TP3/config/example_opsem.py b/TP3/config/example_opsem.py new file mode 100644 index 0000000000000000000000000000000000000000..bcc5dca4e8bbb042e3de024382c4cab6ac304b65 --- /dev/null +++ b/TP3/config/example_opsem.py @@ -0,0 +1,21 @@ +from syntax import * +from opsem import eval_instr + +x = AEVar("x") +y = AEVar("y") +zero = AECst(0) +one = AECst(1) +xneg = BELeq(x, zero) +bound_check = ICond(xneg,ISet("x",one),ISkip()) +init_y = ISet("y",one) +body = ISeq(ISet("y",AEBop(Bop.MUL,y,x)),ISet("x",AEBop(Bop.ADD,x,AEUop(Uop.OPP,one)))) +loop = ILoop(BENeg(BELeq(x,zero)),body) +factorial = ISeq(ISeq(bound_check,init_y),loop) + +print(f"prog is\n{factorial}") + +env = { "x" : 4 } +envf = eval_instr(env,factorial) + +print(f"init is \n{env}") +print(f"result is\n{envf}") diff --git a/TP3/config/example_sign.py b/TP3/config/example_sign.py new file mode 100644 index 0000000000000000000000000000000000000000..6aa6de3d4adb559dddcd246d9cdb3159f2f12b67 --- /dev/null +++ b/TP3/config/example_sign.py @@ -0,0 +1,4 @@ +from sign_analysis import analyze +from example_opsem import factorial + +analyze(factorial) diff --git a/TP3/config/example_sign_eval_exp.py b/TP3/config/example_sign_eval_exp.py new file mode 100644 index 0000000000000000000000000000000000000000..c8bdd995dad92d272d407c6a2c040666e1f2ad29 --- /dev/null +++ b/TP3/config/example_sign_eval_exp.py @@ -0,0 +1,28 @@ +from syntax import * +from sign_analysis import eval_aexp, eval_bexp, abstract_env, sign + +x: ArithExpr = AEVar("x") +y: ArithExpr = AEVar("y") + +# y * (x - x / y) +test_aexp: ArithExpr = AEBop(Bop.MUL,y,AEBop(Bop.ADD,x, AEUop(Uop.OPP,AEBop(Bop.DIV,x,y)))) + +# ! (x - y <= y * (x - x/y)) +test_bexp: BoolExpr = BENeg(BELeq(AEBop(Bop.ADD,x,AEUop(Uop.OPP,y)),test_aexp)) + +def test(env: abstract_env) -> None: + res_a = eval_aexp(env,test_aexp) + res_b = eval_bexp(env,test_bexp) + print(f'In environment { {var: str(sign) for (var,sign) in env.items()} }') + print(f"{test_aexp} -> {res_a}") + print(f"{test_bexp} -> {res_b}") + +test({ 'x': sign.SPOS, 'y': sign.SPOS }) + +test({ 'x': sign.NEG, 'y': sign.NEG }) + +test({ 'x': sign.INT, 'y': sign.Z }) + +test({ 'x': sign.POS, 'y': sign.NZ }) + +test({}) diff --git a/TP3/config/example_sign_reduce.py b/TP3/config/example_sign_reduce.py new file mode 100644 index 0000000000000000000000000000000000000000..17ed63624d1e282d9f535cccecbdf5d04e169e20 --- /dev/null +++ b/TP3/config/example_sign_reduce.py @@ -0,0 +1,33 @@ +from syntax import * +from sign_analysis import state, abstract_env, sign, reduce_state + +x: ArithExpr = AEVar("x") +y: ArithExpr = AEVar("y") + +test_eq: BoolExpr = BEEq(x,y) + +test_neq: BoolExpr = BENeg(test_eq) + +test_leq: BoolExpr = BELeq(x,y) + +test_gt: BoolExpr = BENeg(test_leq) + +def test(env: abstract_env) -> None: + res_eq = reduce_state(env,test_eq) + res_neq = reduce_state(env,test_neq) + res_leq = reduce_state(env,test_leq) + res_gt = reduce_state(env,test_gt) + print(f'In environment { {var: str(sign) for (var,sign) in env.items()} }') + print(f"{test_eq} -> {res_eq}") + print(f"{test_neq} -> {res_neq}") + print(f"{test_leq} -> {res_leq}") + print(f"{test_gt} -> {res_gt}") + +test({ 'x': sign.POS, 'y': sign.NEG }) + +test({ 'x': sign.NZ, 'y': sign.NEG }) + +test({ 'x': sign.POS, 'y': sign.SNEG }) + +test({ 'x': sign.Z, 'y': sign.POS }) + diff --git a/TP3/config/example_widen.py b/TP3/config/example_widen.py new file mode 100644 index 0000000000000000000000000000000000000000..c9372be7b6162f6f47cd8f7ed8a5c2e240aa187d --- /dev/null +++ b/TP3/config/example_widen.py @@ -0,0 +1,61 @@ +from iteration import Transfer, fixpoint_iteration +from syntax import * +from cfg import Cfg +from example_opsem import factorial + +@dataclass +class Number_step: + bound: int | None + def __str__(self): + if self.bound is None: return "+∞" + else: return str(self.bound) + +type S = Number_step | None + +class Analysis(Transfer[S]): + def bottom(self) -> S: + return None + + def init_state(self) -> S: + return Number_step(0) + + def join(self,s1:S,s2:S) -> S: + if s1 is None: return s2 + if s2 is None: return s1 + if s1.bound is None: return s1 + if s2.bound is None: return s2 + return Number_step(max(s1.bound, s2.bound)) + + def widen(self, s1:S, s2:S) -> S: + if s1 is None: return s2 + if s2 is None: return s1 + if s1.bound is None: return s1 + if s2.bound is None: return s2 + if s1.bound < s2.bound: return Number_step(None) + return s1 + + def included(self,s1: S,s2: S) -> bool: + if s1 is None: return True + if s2 is None: return False + if s2.bound is None: return True + if s1.bound is None: return False + return s1.bound <= s2.bound + + def tr_skip(self,s: S) -> S: + if s is None: return None + if s.bound is None: return s + return Number_step(s.bound + 1) + + def tr_set(self,s: S,v: str,e: ArithExpr) -> S: + return self.tr_skip(s) + + def tr_test(self,s: S,c: BoolExpr) -> S: + return self.tr_skip(s) + + def tr_err(self,s: S,e: Expr) -> S: + return self.tr_skip(s) + +res = fixpoint_iteration(Analysis(),Cfg(factorial)) + +for (node, nb) in res.items(): + print(f'{node} -> {nb}') diff --git a/TP3/config/interval_analysis.py b/TP3/config/interval_analysis.py new file mode 100644 index 0000000000000000000000000000000000000000..9186efbf8ffeedb0fe1e207381313552f1b34163 --- /dev/null +++ b/TP3/config/interval_analysis.py @@ -0,0 +1,406 @@ +# pyright: strict + +""" +implements a constant propagation analysis +""" + +from dataclasses import dataclass +from cfg import Cfg +from iteration import Transfer, fixpoint_iteration +from syntax import * + +@dataclass +class Interval: + """ potentially unbounded interval + + None in either bound means that we don't have info. + Hence `Interval(None,None)` denotes all integers + """ + lower_bound: int | None + upper_bound: int | None + def __str__(self): + if self.lower_bound is None: + l = "-∞" + else: + l = str(self.lower_bound) + if self.upper_bound is None: + u = "+∞" + else: + u = str(self.upper_bound) + return f"[{l}; {u}]" + +class Top: + def __str__(self): return "TOP" + +@dataclass +class BTop: + """class used for the evaluation of boolean expressions + + BTop(False) indicates that we don't know if the result is True or False, but + that the evaluation cannot lead to an error + BTop(True) indicates that we neither know the result nor whether an error can occur + """ + has_error: bool + def __str__(self): + if self.has_error: return "TOP (maybe error)" + else: return "TOP (no error)" + +type abstract_env = dict[str, Interval] +"""mapping from variables to abstract values. + +As with concrete environment, a variable not in the dictionary will +lead to an error if we try to obtain its value +""" + +type state = abstract_env | None +"""abstract state is either an abstract env or bottom +""" + +def interval_leq(i1: Interval, i2: Interval) -> bool: + if i2.lower_bound is None: + if i2.upper_bound is None: + return True + if i1.upper_bound is None: + return False + return i1.upper_bound <= i2.upper_bound + if i2.upper_bound is None: + if i1.lower_bound is None: + return False + return i1.lower_bound >= i2.lower_bound + if i1.lower_bound is None or i1.upper_bound is None: + return False + return i1.lower_bound >= i2.lower_bound and i1.upper_bound <= i2.upper_bound + +def interval_join(i1: Interval, i2: Interval) -> Interval: + if i1.lower_bound is None or i2.lower_bound is None: + l = None + else: + l = min(i1.lower_bound,i2.lower_bound) + if i1.upper_bound is None or i2.upper_bound is None: + u = None + else: + u = max(i1.upper_bound,i2.upper_bound) + return Interval(l,u) + +def interval_meet(i1: Interval, i2: Interval) -> Interval | None: + if i1.lower_bound is None: + l = i2.lower_bound + elif i2.lower_bound is None: + l = i1.lower_bound + else: + l = max(i1.lower_bound,i2.lower_bound) + if i1.upper_bound is None: + u = i2.upper_bound + elif i2.upper_bound is None: + u = i1.upper_bound + else: + u = min(i1.upper_bound,i2.upper_bound) + if l is not None and u is not None and l > u: return None + return Interval(l,u) + +def interval_widen(i1: Interval, i2: Interval) -> Interval: + if i1.lower_bound is None or i2.lower_bound is None: + l = None + elif i1.lower_bound <= i2.lower_bound: + l = i1.lower_bound + else: + l = None + if i1.upper_bound is None or i2.upper_bound is None: + u = None + elif i1.upper_bound >= i2.upper_bound: + u = i1.upper_bound + else: + u = None + return Interval(l,u) + +def has_strict_positive_val(i: Interval) -> bool: + return i.upper_bound is None or i.upper_bound > 0 + +def has_strict_negative_val(i: Interval) -> bool: + return i.lower_bound is None or i.lower_bound < 0 + +def contains_zero(i: Interval) -> bool: + if i.lower_bound is None: + return i.upper_bound is None or i.upper_bound >= 0 + if i.upper_bound is None: + return i.lower_bound <= 0 + return i.lower_bound <= 0 and i.upper_bound >= 0 + +def is_zero(i: Interval) -> bool: + return i.lower_bound == 0 and i.upper_bound == 0 + +def interval_opp(i: Interval) -> Interval: + if i.lower_bound is None: + u = None + else: + u = -i.lower_bound + if i.upper_bound is None: + l = None + else: + l = -i.upper_bound + return Interval(l,u) + +def interval_add(i1: Interval, i2: Interval) -> Interval: + raise NotImplementedError + +def interval_mul_pos(i1: Interval, i2: Interval) -> Interval: + assert (i1.lower_bound is not None and i1.lower_bound >= 0) + assert (i2.lower_bound is not None and i2.lower_bound >= 0) + l = i1.lower_bound * i2.lower_bound + if i1.upper_bound is None or i2.upper_bound is None: + u = None + else: + u = i1.upper_bound * i2.upper_bound + return Interval(l,u) + +def interval_opt_join(i1: Interval | None, i2: Interval) -> Interval: + if i1 is None: return i2 + return interval_join(i1,i2) + +def interval_mul(i1: Interval, i2: Interval) -> Interval: + i1_neg = interval_meet(i1,Interval(None,0)) + i2_neg = interval_meet(i2,Interval(None,0)) + i1_pos = interval_meet(i1,Interval(0,None)) + i2_pos = interval_meet(i2,Interval(0,None)) + if i1_neg is None or i2_pos is None: + res = None + else: + res = interval_opp(interval_mul_pos(interval_opp(i1_neg),i2_pos)) + if i1_pos is not None and i2_neg is not None: + res1 = interval_opp(interval_mul_pos(i1_pos,interval_opp(i2_neg))) + res = interval_opt_join(res, res1) + if i1_neg is not None and i2_neg is not None: + res1 = interval_mul_pos(interval_opp(i1_neg),interval_opp(i2_neg)) + res = interval_opt_join(res,res1) + if i1_pos is not None and i2_pos is not None: + res1 = interval_mul_pos(i1_pos, i2_pos) + res = interval_opt_join(res, res1) + # at least one of the 4 cases is not empty + assert res is not None + return res + +def interval_div(i1: Interval, i2: Interval) -> Interval | Top | None: + raise NotImplementedError + +def eval_aexp(env: abstract_env, e: ArithExpr) -> Interval | Top | None: + """evaluate an arithmetic expression in an abstract environment + returns None in case of error + """ + match e: + case AECst(value): return Interval(value,value) + case AEVar(var): + if var in env: return env[var] + else: return None + case AEUop(uop,expr): + res = eval_aexp(env,expr) + if res is None or isinstance(res,Top): return res + if uop == Uop.OPP: return interval_opp(res) + return None + case AEBop(bop,left_expr,right_expr): + v1 = eval_aexp(env,left_expr) + v2 = eval_aexp(env,right_expr) + if v1 is None or v2 is None: return None + if isinstance(v1,Top) or isinstance(v2,Top): + return Top() + match bop: + case Bop.ADD: return interval_add(v1,v2) + case Bop.MUL: return interval_mul(v1,v2) + case Bop.DIV: return interval_div(v1,v2) + case _: pass + +def eval_bexp(env: abstract_env, e: BoolExpr) -> bool | BTop | None: + """abstract evaluation of a boolean expression""" + match e: + case BEPlain(aexpr): + res = eval_aexp(env, aexpr) + if res is None: return None + if isinstance(res,Top): return BTop(True) + if res.lower_bound == 0 and res.upper_bound == 0: return True + if not interval_leq(Interval(0,0), res): return False + return BTop(False) + case BEEq(left_expr,right_expr): + v1 = eval_aexp(env, left_expr) + v2 = eval_aexp(env, right_expr) + if v1 is None or v2 is None: return None + if isinstance(v1,Top) or isinstance(v2,Top): return BTop(True) + if v1.lower_bound is None or v2.lower_bound is None or v1.upper_bound is None or v2.upper_bound is None: + return BTop(False) + if v1.lower_bound > v2.upper_bound or v1.upper_bound < v2.lower_bound: + return False + if v1.lower_bound == v1.upper_bound and v2.lower_bound == v2.upper_bound and v1.lower_bound == v2.lower_bound: + return True + return BTop(False) + case BELeq(left_expr,right_expr): + v1 = eval_aexp(env, left_expr) + v2 = eval_aexp(env, right_expr) + if v1 is None or v2 is None: return None + if isinstance(v1,Top) or isinstance(v2,Top): return BTop(True) + if v1.upper_bound is None: + if v1.lower_bound is None: + return BTop(False) + if v2.upper_bound is None: + return BTop(False) + if v2.upper_bound < v1.lower_bound: + return False + return BTop(False) + if v2.lower_bound is None: + return BTop(False) + if v1.upper_bound <= v2.lower_bound: + return True + if v1.lower_bound is None: + return BTop(False) + if v2.upper_bound is None: + return BTop(False) + if v2.upper_bound < v1.lower_bound: + return False + return BTop(False) + case BENeg(expr): + v = eval_bexp(env,expr) + if v is None: return None + if isinstance(v,BTop): return v + return not v + case _: pass + +def reduce_eq(s:state, x:str, i: Interval) -> state: + raise NotImplementedError + +def reduce_neq(s:state, x: str, i: Interval) -> state: + raise NotImplementedError + +def reduce_leq(s:state,x:str,upper_bound: int) -> state: + raise NotImplementedError + +def reduce_geq(s: state, x: str, lower_bound: int) -> state: + raise NotImplementedError + +def reduce_state(s: state,c: BoolExpr) -> state: + if s is None: return s + match c: + case BEEq(AEVar(x), AEVar(y)): + vx = eval_aexp(s,AEVar(x)) + vy = eval_aexp(s,AEVar(y)) + if vx is None or vy is None: return None + if not isinstance(vx,Top): + s = reduce_eq(s,y,vx) + if not isinstance(vy,Top): + s = reduce_eq(s,x,vy) + return s + case BEEq(AEVar(x), right_expr): + v = eval_aexp(s,right_expr) + if v is None: return None + if isinstance(v,Top): return s + return reduce_eq(s,x,v) + case BEEq(left_expr, AEVar(y)): + v = eval_aexp(s,left_expr) + if v is None: return None + if isinstance(v,Top): return s + return reduce_eq(s,y,v) + case BELeq(AEVar(x), AEVar(y)): + vx = eval_aexp(s,AEVar(x)) + vy = eval_aexp(s,AEVar(y)) + if vx is None or vy is None: return None + if not isinstance(vy,Top) and vy.upper_bound is not None: + s = reduce_leq(s,x,vy.upper_bound) + if not isinstance(vx,Top) and vx.lower_bound is not None: + s = reduce_geq(s,y,vx.lower_bound) + return s + case BELeq(AEVar(x),right_expr): + v = eval_aexp(s,right_expr) + if v is None: return None + if isinstance(v,Top) or v.upper_bound is None: return s + return reduce_leq(s,x,v.upper_bound) + case BELeq(left_expr,AEVar(y)): + v = eval_aexp(s,left_expr) + if v is None: return None + if isinstance(v,Top) or v.lower_bound is None: return s + return reduce_geq(s,y,v.lower_bound) + case BENeg(BEEq(AEVar(x), AEVar(y))): + vx = eval_aexp(s,AEVar(x)) + vy = eval_aexp(s,AEVar(y)) + if vx is None or vy is None: return None + if not isinstance(vx,Top): + s = reduce_neq(s,y,vx) + if not isinstance(vy,Top): + s = reduce_neq(s,x,vy) + return s + case BENeg(BEEq(AEVar(x), right_expr)): + v = eval_aexp(s,right_expr) + if v is None: return None + if isinstance(v,Top): return s + return reduce_neq(s,x,v) + case BENeg(BEEq(left_expr, AEVar(y))): + v = eval_aexp(s,left_expr) + if v is None: return None + if isinstance(v,Top): return s + return reduce_neq(s,y,v) + case BENeg(BELeq(AEVar(x), AEVar(y))): + vx = eval_aexp(s,AEVar(x)) + vy = eval_aexp(s,AEVar(y)) + if vx is None or vy is None: return None + if not isinstance(vx,Top) and vx.upper_bound is not None: + s = reduce_leq(s,y,vx.upper_bound - 1) + if not isinstance(vy,Top) and vy.lower_bound is not None: + s = reduce_geq(s,x,vy.lower_bound + 1) + return s + case BENeg(BELeq(AEVar(x),right_expr)): + v = eval_aexp(s,right_expr) + if v is None: return None + if isinstance(v,Top) or v.lower_bound is None: return s + return reduce_geq(s,x,v.lower_bound + 1) + case BENeg(BELeq(left_expr,AEVar(y))): + v = eval_aexp(s,left_expr) + if v is None: return None + if isinstance(v,Top) or v.upper_bound is None: return s + return reduce_leq(s,y,v.upper_bound - 1) + case _: return s + +class Interval_analysis(Transfer[state]): + variables: frozenset[str] + def __init__(self,instr: Instr): + self.variables = variables_of_instr(instr) + def bottom(self) -> state: + return None + def init_state(self) -> state: + return dict.fromkeys(self.variables, Interval(None,None)) + def join(self,s1:state,s2:state) -> state: + if s1 is None: return s2 + if s2 is None: return s1 + res: abstract_env = {} + for var in self.variables: + v1 = s1[var] + v2 = s2[var] + v = interval_join(v1,v2) + res[var] = v + return res + + def widen(self, s1:state, s2:state) -> state: + raise NotImplementedError + + def included(self,s1: state,s2: state) -> bool: + if s1 is None: return True + if s2 is None: return False + for var in self.variables: + if not interval_leq(s1[var],s2[var]): return False + return True + + def tr_skip(self,s: state) -> state: + return s + + def tr_set(self,s: state,v: str,e: ArithExpr) -> state: + raise NotImplementedError + + def tr_test(self,s: state,c: BoolExpr) -> state: + raise NotImplementedError + + def tr_err(self,s: state,e: Expr) -> state: + raise NotImplementedError + +def analyze(i: Instr) -> None: + cfg = Cfg(i) + res = fixpoint_iteration(Interval_analysis(i), cfg) + for node in cfg.g.nodes: + print(f"State at {node}:") + s = res[node] + if s is not None: + for (v, s) in s.items(): + print(f" {v}: {s}") diff --git a/TP3/config/iteration.py b/TP3/config/iteration.py new file mode 100644 index 0000000000000000000000000000000000000000..f91169661c566371dc324842b44f562fe95b4d76 --- /dev/null +++ b/TP3/config/iteration.py @@ -0,0 +1,46 @@ +"""Fixpoint iterator over a CfG + +- Transfer is a base class that must be instantiated for +each static analysis. +- fixpoint_iteration computes a fixpoint over a cfg for the given +transfer instance +""" +from cfg import * +from typing import Protocol + +class Transfer[S](Protocol): + """lists the functions that must be implemented for a static analysis over Lattice S""" + def bottom(self) -> S: + """the empty state, associated to unvisited nodes""" + ... + def init_state(self) -> S: + """the state associated to the initial node""" + ... + def join(self,s1:S,s2:S) -> S: + """join of two states when merging branches""" + ... + def included(self,s1: S,s2: S) -> bool: + """return True when the first state is included in the second""" + ... + def tr_skip(self,s: S) -> S: + """transfer state across a Skip transition + + Almost always transfer the state unchanged + """ + return s + def tr_set(self,s: S,v: str,e: ArithExpr) -> S: + """transfer state across an assignment""" + ... + def tr_test(self,s: S,c: BoolExpr) -> S: + """transfer state across a test transition""" + ... + def tr_err(self,s: S,e: Expr) -> S: + """transfer state across a transition to error state""" + ... + +def fixpoint_iteration[T](transfer: Transfer[T], cfg: Cfg) -> dict[Node,T]: + """computes the fixpoint for the given transfer functions over the given CfG + + output maps each node to the computed state + """ + raise NotImplementedError diff --git a/TP3/config/opsem.py b/TP3/config/opsem.py new file mode 100644 index 0000000000000000000000000000000000000000..1313e985e2c11ca43cc8fcaa926eec02eba135f1 --- /dev/null +++ b/TP3/config/opsem.py @@ -0,0 +1,50 @@ +""" +Operational semantics for the Why language + +Provides evaluation functions for the three syntactic classes, +based on a environment mapping variables to integer values. +These functions return None when an error occur somewhere (Big step semantics) +""" + +from syntax import * + +def eval_aexp(env: dict[str,int], exp: ArithExpr) -> int | None: + """evaluates an arithmetic expression""" + match exp: + case AECst(value): + raise NotImplementedError + case AEVar(var): + raise NotImplementedError + case AEUop(uop,expr): + raise NotImplementedError + case AEBop(bop,left_expr,right_expr): + raise NotImplementedError + case _: assert False + +def eval_bexp(env: dict[str,int], exp:BoolExpr) -> bool | None: + """evaluates a boolean expression""" + match exp: + case BEPlain(aexpr): + raise NotImplementedError + case BEEq(left_expr,right_expr): + raise NotImplementedError + case BELeq(left_expr,right_expr): + raise NotImplementedError + case BENeg(expr): + raise NotImplementedError + case _: assert False + +def eval_instr(env: dict[str,int], instr: Instr) -> dict[str,int] | None: + """evaluates an instruction""" + match instr: + case ISkip(): + raise NotImplementedError + case ISet(var,expr): + raise NotImplementedError + case ISeq(first,second): + raise NotImplementedError + case ICond(cond,true_branch,false_branch): + raise NotImplementedError + case ILoop(cond,body): + raise NotImplementedError + case _: assert False diff --git a/TP3/config/sign_analysis.py b/TP3/config/sign_analysis.py new file mode 100644 index 0000000000000000000000000000000000000000..19439ad4196f7b5c80560aed07cf07b701aec4cd --- /dev/null +++ b/TP3/config/sign_analysis.py @@ -0,0 +1,448 @@ +# pyright: strict +""" +implements a sign analysis +""" +from enum import Enum, auto +from dataclasses import dataclass +from cfg import Cfg +from iteration import Transfer, fixpoint_iteration +from syntax import * + +class sign(Enum): + SNEG = auto() + SPOS = auto() + Z = auto() + NEG = auto() + POS = auto() + NZ = auto() + INT = auto() + +class Top: + def __str__(self): return "TOP" + +@dataclass +class BTop: + """class used for the evaluation of boolean expressions + + BTop(False) indicates that we don't know if the result is True or False, but + that the evaluation cannot lead to an error + BTop(True) indicates that we neither know the result nor whether an error can occur + """ + has_error: bool + def __str__(self): + if self.has_error: return "TOP (maybe error)" + else: return "TOP (no error)" + +type abstract_env = dict[str, sign] +"""mapping from variables to abstract values. + +As with concrete environment, a variable not in the dictionary will +lead to an error if we try to obtain its value +""" +type state = abstract_env | None +"""abstract state is either an abstract env or bottom +""" + +def sign_leq(v1: sign, v2:sign) -> bool: + """order relation on the sign lattice""" + if v1 == v2: return True + match v1,v2: + case _, sign.INT: return True + case sign.INT, _: return False + case sign.SNEG,(sign.NEG | sign.NZ): return True + case sign.SPOS,(sign.POS | sign.NZ): return True + case sign.Z,(sign.POS | sign.NEG): return True + case sign.NEG,sign.NZ: return True + case sign.POS,sign.NZ: return True + case _: return False + +def sign_join(v1: sign, v2:sign) -> sign: + """computes least upper bound""" + match v1,v2: + case sign.INT, _: return sign.INT + case _, sign.INT: return sign.INT + case sign.NZ, (sign.NZ | sign.SPOS | sign.SNEG): return sign.NZ + case sign.NZ,_: return sign.INT + case sign.NEG, (sign.NEG | sign.SNEG | sign.Z): return sign.NEG + case sign.NEG, _: return sign.INT + case sign.POS, (sign.POS | sign.SPOS | sign.Z): return sign.POS + case sign.POS,_: return sign.INT + case sign.SNEG, sign.SNEG: return sign.SNEG + case sign.SNEG, (sign.Z | sign.NEG): return sign.NEG + case sign.SNEG, (sign.SPOS | sign.NZ): return sign.NZ + case sign.SNEG, _: return sign.INT + case sign.SPOS, sign.SPOS: return sign.SPOS + case sign.SPOS, (sign.POS | sign.Z): return sign.POS + case sign.SPOS, (sign.SNEG | sign.NZ): return sign.NZ + case sign.SPOS, _: return sign.INT + case sign.Z, sign.SNEG: return sign.NEG + case sign.Z, sign.SPOS: return sign.POS + case sign.Z, sign.NZ: return sign.INT + case sign.Z, _: return v2 + +def sign_meet(s1: sign, s2:sign) -> sign | None: + """computes greatest lower bound. Can be None (i.e. bottom)""" + match s1,s2: + case sign.INT, _: return s2 + case _, sign.INT: return s1 + case sign.SNEG, (sign.NEG | sign.NZ | sign.SNEG): return s1 + case (sign.NEG | sign.NZ | sign.SNEG), sign.SNEG: return s2 + case sign.SNEG, _: return None + case _, sign.SNEG: return None + case sign.SPOS, (sign.POS | sign.NZ | sign.SPOS): return s1 + case (sign.POS | sign.NZ | sign.SPOS), sign.SPOS: return s2 + case sign.SPOS, _: return None + case _, sign.SPOS: return None + case sign.Z, (sign.NEG | sign.POS): return s1 + case (sign.NEG | sign.POS), sign.Z: return s2 + case sign.Z, sign.Z: return s1 + case sign.Z, _: return None + case _, sign.Z: return None + case sign.NEG, sign.NEG: return s1 + case sign.POS, sign.POS: return s1 + case sign.NEG, sign.POS: return sign.Z + case sign.POS, sign.NEG: return sign.Z + case sign.NZ, sign.NEG: return sign.SNEG + case sign.NEG, sign.NZ: return sign.SNEG + case sign.NZ, sign.POS: return sign.SPOS + case sign.POS, sign.NZ: return sign.SPOS + case sign.NZ, sign.NZ: return sign.NZ + +def sign_opp(s:sign) -> sign: + """unary minus""" + match s: + case sign.SNEG: return sign.SPOS + case sign.SPOS: return sign.SNEG + case sign.POS: return sign.NEG + case sign.NEG: return sign.POS + case _: return s + +def sign_add(s1:sign,s2:sign) -> sign: + """addition""" + match (s1,s2): + case sign.INT,_: return sign.INT + case _,sign.INT: return sign.INT + case sign.Z,_: return s2 + case _,sign.Z: return s1 + case sign.SNEG, (sign.SNEG | sign.NEG): return sign.SNEG + case (sign.SNEG | sign.NEG), sign.SNEG: return sign.SNEG + case sign.NEG, sign.NEG: return sign.NEG + case sign.SPOS, (sign.SPOS | sign.POS): return sign.SPOS + case (sign.SPOS | sign.POS), sign.SPOS: return sign.SPOS + case sign.POS, sign.POS: return sign.POS + case _: return sign.INT + +def sign_mul(s1: sign, s2: sign) -> sign: + """multiplication""" + match s1,s2: + case sign.INT,_: return sign.INT + case _,sign.INT: return sign.INT + case sign.Z,_: return sign.Z + case _,sign.Z: return sign.Z + case sign.SPOS, _: return s2 + case _, sign.SPOS: return s1 + case sign.SNEG, _: return sign_opp(s2) + case _,sign.SNEG: return sign_opp(s1) + case sign.NZ, _: return sign.INT + case _, sign.NZ: return sign.INT + case sign.NEG, sign.NEG: return sign.POS + case sign.NEG, sign.POS: return sign.NEG + case sign.POS, sign.NEG: return sign.NEG + case sign.POS, sign.POS: return sign.POS + +def sign_div(s1: sign, s2: sign) -> sign | Top | None: + """division: can lead to errors even if operands are plain sign""" + match s1, s2: + case _,sign.Z: return None + case _,sign.INT: return Top() + case _,sign.POS: return Top() + case _,sign.NEG: return Top() + case sign.Z,_: return sign.Z + case sign.INT,_: return sign.INT + case sign.NZ,_: return sign.INT + case _,sign.NZ: return sign.INT + case (sign.POS | sign.SPOS), sign.SPOS: return sign.POS + case (sign.NEG | sign.SNEG), sign.SPOS: return sign.NEG + case (sign.POS | sign.SPOS), sign.SNEG: return sign.NEG + case (sign.NEG | sign.SNEG), sign.SNEG: return sign.POS + +def eval_aexp(env: abstract_env, e: ArithExpr) -> sign | Top | None: + """evaluate an arithmetic expression in an abstract environment + returns None in case of error + """ + match e: + case AECst(value): + if value < 0: + return sign.NEG + elif value > 0: + return sign.POS + elif value == 0: + return sign.Z + else: + return None + case AEVar(var): + if var in env: + return env[var] + else : + return None + case AEUop(_,expr): + s = eval_aexp(env, expr) + if s is None: + return None + elif isinstance(s, Top): + return Top() + else: + return sign_opp(s) + case AEBop(bop,left_expr,right_expr): + l = eval_aexp(env, left_expr) + r = eval_aexp(env, right_expr) + if l is None or r is None: + return None + if isinstance(l, Top) or isinstance(r, Top): + return Top() + match bop: + case Bop.ADD: return sign_add(l, r) + case Bop.MUL: return sign_mul(l, r) + case Bop.DIV: return sign_div(l, r) + case _: pass + +def eval_bexp(env: abstract_env, e: BoolExpr) -> bool | BTop | None: + """abstract evaluation of a boolean expression""" + match e: + case BEPlain(aexpr): + res = eval_aexp(env, aexpr) + if res is None: + return None + if isinstance(res, Top) : + return BTop(True) + if res == sign.Z: + return False + if res == sign.NZ or res == sign.SNEG or res == sign.SPOS : + return True + return BTop(False) + case BEEq(left_expr,right_expr): + l = eval_aexp(env, left_expr) + r = eval_aexp(env, right_expr) + if l is None or r is None: + return None + if isinstance(l, Top) or isinstance(r, Top) : + return BTop(True) + match l,r: + case sign.SNEG, (sign.Z | sign.POS | sign.SPOS) : return False + case (sign.Z | sign.POS | sign.SPOS), sign.SNEG : return False + case sign.NEG, sign.SPOS : return False + case sign.SPOS, sign.NEG : return False + case sign.Z, sign.Z : return True + case sign.Z, (sign.SNEG | sign.SPOS | sign.NZ) : return False + case (sign.SNEG | sign.SPOS | sign.NZ), sign.Z : return False + case _ : return BTop(False) + case BELeq(left_expr,right_expr): + l = eval_aexp(env, left_expr) + r = eval_aexp(env, right_expr) + if l is None or r is None: + return None + if isinstance(l, Top) or isinstance(r, Top) : + return BTop(True) + match l,r: + case sign.SNEG, (sign.Z | sign.POS | sign.SPOS) : return True + case sign.NEG, sign.SPOS : return True + case sign.Z, sign.SNEG : return False + case sign.Z, sign.SPOS : return True + case sign.POS, sign.SNEG : return False + case sign.SPOS, (sign.SNEG | sign.NEG | sign.Z) : return False + case _ : return BTop(False) + case BENeg(expr): + b = eval_bexp(env, expr) + if b is None: + return None + if isinstance(b, BTop): + return b + return not b + case _: pass + +def reduce_eq_sign(s: state, x: str, expr: ArithExpr) -> state: + """reduce the value associated to x in s under the hypothesis that x == expr""" + if s is None: return None + v = eval_aexp(s,expr) + if v is None: return None + if isinstance(v,Top): return s + res = sign_meet(s[x],v) + if res is None: return None + return s | { x: res } + +def reduce_neq_sign(s: state, x: str, expr: ArithExpr) -> state: + """reduce the value associated to x in s under the hypothesis that x != expr""" + if s is None: return None + v = eval_aexp(s,expr) + if v is None: return None + if isinstance(v,Top): return s + match s[x],v: + case sign.POS, sign.Z: return s | { x: sign.SPOS } + case sign.NEG, sign.Z: return s | { x: sign.SNEG } + case sign.INT, sign.Z: return s | { x: sign.NZ } + case _: return s + +def reduce_upper_bound(s: state, x: str, expr: ArithExpr) -> state: + """reduce the value associated to x in s under the hypothesis that x <= expr""" + if s is None: return None + v = eval_aexp(s,expr) + if v is None: return None + if isinstance(v,Top): return s + upper = sign.INT + match v: + case sign.NEG | sign.SNEG: + upper = v + case sign.Z: + upper = sign.NEG + case _: pass + res = sign_meet(s[x],upper) + if res is None: return None + return s | { x: res } + +def reduce_strict_upper_bound(s: state, x: str, expr: ArithExpr) -> state: + """reduce the value associated to x in s under the hypothesis that x < expr""" + if s is None: return None + v = eval_aexp(s,expr) + if v is None: return None + if isinstance(v,Top): return s + match v: + case sign.NEG | sign.SNEG | sign.Z: + upper = sign.SNEG + case _: + upper = sign.INT + res = sign_meet(s[x],upper) + if res is None: return None + return s | { x: res } + +def reduce_lower_bound(s: state, x: str, expr: ArithExpr) -> state: + """reduce the value associated to x in s under the hypothesis that x >= expr""" + if s is None: return None + v = eval_aexp(s,expr) + if v is None: return None + if isinstance(v,Top): return s + lower = sign.INT + match v: + case sign.POS | sign.SPOS: + lower = v + case sign.Z: + lower = sign.POS + case _: pass + res = sign_meet(s[x],lower) + if res is None: return None + return s | { x: res } + +def reduce_strict_lower_bound(s: state, x: str, expr: ArithExpr) -> state: + """reduce the value associated to x in s under the hypothesis that x > expr""" + if s is None: return s + v = eval_aexp(s,expr) + if v is None: return None + if isinstance(v,Top): return s + match v: + case sign.POS | sign.SPOS | sign.Z: + lower = sign.SPOS + case _: + lower = sign.INT + res = sign_meet(s[x],lower) + if res is None: return None + return s | { x: res } + +def reduce_state(s: state,c: BoolExpr) -> state: + if s is None: return s + match c: + case BEPlain(aexpr): + if isinstance(aexpr, AEVar): + return reduce_state(s, BENeg(BEEq(aexpr, AECst(0)))) + else: return s + case BEEq(left_expr,right_expr): + if isinstance(left_expr, AEVar) and isinstance(right_expr, AEVar): + return reduce_eq_sign(reduce_eq_sign(s, left_expr.var, right_expr), right_expr.var, left_expr) + if isinstance(left_expr, AEVar): + return reduce_eq_sign(s, left_expr.var, right_expr) + if isinstance(right_expr, AEVar): + return reduce_eq_sign(s, right_expr.var, left_expr) + return s + case BELeq(left_expr,right_expr): + if isinstance(left_expr, AEVar) and isinstance(right_expr, AEVar): + return reduce_lower_bound(reduce_upper_bound(s, left_expr.var, right_expr), right_expr.var, left_expr) + if isinstance(left_expr, AEVar): + return reduce_upper_bound(s, left_expr.var, right_expr) + if isinstance(right_expr, AEVar): + return reduce_lower_bound(s, right_expr.var, left_expr) + return s + case BENeg(expr): + match expr: + case BEPlain(aexpr): + if isinstance(aexpr, AEVar): + return reduce_eq_sign(s, aexpr.var, AECst(0)) + else: return s + case BEEq(left_expr,right_expr): + if isinstance(left_expr, AEVar) and isinstance(right_expr, AEVar): + return reduce_neq_sign(reduce_neq_sign(s, left_expr.var, right_expr), right_expr.var, left_expr) + if isinstance(left_expr, AEVar): + return reduce_neq_sign(s, left_expr.var, right_expr) + if isinstance(right_expr, AEVar): + return reduce_neq_sign(s, right_expr.var, left_expr) + return s + case BELeq(left_expr,right_expr): + if isinstance(left_expr, AEVar) and isinstance(right_expr, AEVar): + return reduce_strict_upper_bound(reduce_strict_lower_bound(s, left_expr.var, right_expr), right_expr.var, left_expr) + if isinstance(left_expr, AEVar): + return reduce_strict_lower_bound(s, left_expr.var, right_expr) + if isinstance(right_expr, AEVar): + return reduce_strict_upper_bound(s, right_expr.var, left_expr) + return s + case BENeg(expr): + return reduce_state(s, c) + case _: return s + case _: return s + +class Sign_interp(Transfer[state]): + variables: frozenset[str] + def __init__(self,instr: Instr): + self.variables = variables_of_instr(instr) + def bottom(self) -> state: + return None + def init_state(self) -> state: + return dict.fromkeys(self.variables, sign.INT) + def join(self,s1:state,s2:state) -> state: + if s1 is None: return s2 + if s2 is None: return s1 + res: abstract_env = {} + for var in self.variables: + v1 = s1[var] + v2 = s2[var] + res[var] = sign_join(v1,v2) + return res + + def included(self,s1: state,s2: state) -> bool: + if s1 is None: return True + if s2 is None: return False + for var in self.variables: + if not sign_leq(s1[var], s2[var]): return False + return True + + def tr_skip(self,s: state) -> state: + return s + + def tr_set(self,s: state,v: str,e: ArithExpr) -> state: + raise NotImplementedError + + def tr_test(self,s: state,c: BoolExpr) -> state: + raise NotImplementedError + + def tr_err(self,s: state,e: Expr) -> state: + if s is None: return s + if isinstance(e,ArithExpr): + raise NotImplementedError + if isinstance(e,BoolExpr): + raise NotImplementedError + +def analyze(i: Instr) -> None: + cfg = Cfg(i) + res = fixpoint_iteration(Sign_interp(i), cfg) + for node in cfg.g.nodes: + print(f"State at {node}:") + s = res[node] + if s is not None: + for (v, s) in s.items(): + print(f" {v}: {s}") diff --git a/TP3/config/syntax.py b/TP3/config/syntax.py new file mode 100644 index 0000000000000000000000000000000000000000..c0938bda1f9a7554cc4db3a13763d0d68732c5bc --- /dev/null +++ b/TP3/config/syntax.py @@ -0,0 +1,185 @@ +"""Nodes of the abstract syntax tree of the program: + +- Uop/Bop represent unary/binary arithmetic operator +- ArithExpr and its children describe arithmetic expressions +- BoolExpr and its children describe boolean expressions +- Instr and its children describe instruction + +""" +from enum import Enum +from dataclasses import dataclass + +class Uop(Enum): + """unary operators. Currently only unary minus""" + OPP = 1 + def __str__(self): + if self is Uop.OPP: + return "-" + return "" + +class Bop(Enum): + """binary operators: addition, multiplication, and division""" + ADD = 1 + MUL = 2 + DIV = 3 + def __str__(self): + match self: + case Bop.ADD: return "+" + case Bop.MUL: return "*" + case Bop.DIV: return "/" + +class Expr: + """generic class for expressions, either arithmetic or boolean""" + pass + +@dataclass +class ArithExpr(Expr): + """generic class for arithmetic expressions""" + pass + +@dataclass +class AECst(ArithExpr): + """integer constants""" + value: int + def __str__(self): + return f"{self.value}" + +@dataclass +class AEVar(ArithExpr): + """variables""" + var: str + def __str__(self): + return self.var + +@dataclass +class AEUop(ArithExpr): + """unary operation""" + uop: Uop + expr: ArithExpr + def __str__(self): + return f"{self.uop}{self.expr}" + +@dataclass +class AEBop(ArithExpr): + """binary operation""" + bop: Bop + left_expr: ArithExpr + right_expr: ArithExpr + def __str__(self): + #TODO: only put parentheses if necessary + return f"({self.left_expr}) {self.bop} ({self.right_expr})" + +@dataclass +class BoolExpr(Expr): + """generic class for boolean expressions""" + pass + +@dataclass +class BEPlain(BoolExpr): + """arithmetic expression (true if not 0)""" + aexpr: ArithExpr + def __str__(self): + return f"{self.aexpr}" + +@dataclass +class BEEq(BoolExpr): + """equality between two arithmetic expression""" + left_expr: ArithExpr + right_expr:ArithExpr + def __str__(self): + return f"{self.left_expr} = {self.right_expr}" + +@dataclass +class BELeq(BoolExpr): + """less or equal""" + left_expr: ArithExpr + right_expr: ArithExpr + def __str__(self): + return f"{self.left_expr} <= {self.right_expr}" + +@dataclass +class BENeg(BoolExpr): + """Negation""" + expr: BoolExpr + def __str__(self): + return f"!{self.expr}" + +class Instr: + """generic class for instruction""" + pass + +@dataclass +class ISkip(Instr): + """Skip (do nothing)""" + def __str__(self): + return "skip" + +@dataclass +class ISet(Instr): + """assignment to a variable""" + var: str + expr: ArithExpr + def __str__(self): + return f"{self.var} := {self.expr}" + +@dataclass +class ISeq(Instr): + """sequence of two instructions""" + first: Instr + second: Instr + def __str__(self): + return f"{self.first};\n{self.second}" + +@dataclass +class ICond(Instr): + """if then else""" + cond: BoolExpr + true_branch: Instr + false_branch: Instr + def __str__(self): + return f"if {self.cond} then\n{self.true_branch}\nelse\n{self.false_branch}\nfi" + +@dataclass +class ILoop(Instr): + """while loop""" + cond: BoolExpr + body: Instr + def __str__(self): + return f"while {self.cond} do\n{self.body}\ndone" + +def variables_of_aexpr(e: ArithExpr) -> frozenset[str]: + """return the set of variables appearing in the expression""" + match e: + case AECst(_): return frozenset() + case AEVar(var): return frozenset(var) + case AEUop(expr=e): return variables_of_aexpr(e) + case AEBop(left_expr=le,right_expr=re): + return variables_of_aexpr(le) | variables_of_aexpr(re) + case _: assert False + +def variables_of_bexpr(e: BoolExpr) -> frozenset[str]: + """return the set of variable appearing in the expression""" + match e: + case BEPlain(expr): return variables_of_aexpr(expr) + case BEEq(left_expr=le,right_expr=re): + return variables_of_aexpr(le) | variables_of_aexpr(re) + case BELeq(left_expr=le,right_expr=re): + return variables_of_aexpr(le) | variables_of_aexpr(re) + case BENeg(expr): + return variables_of_bexpr(expr) + case _: assert False + +def variables_of_instr(instr: Instr) -> frozenset[str]: + """return the set of variables appearing in a program""" + match instr: + case ISkip(): return frozenset() + case ISet(var=v,expr=e): + return frozenset([v]) | variables_of_aexpr(e) + case ISeq(first=i1,second=i2): + return variables_of_instr(i1) | variables_of_instr(i2) + case ICond(cond=c,true_branch=tb,false_branch=fb): + vbranches = variables_of_instr(tb) | variables_of_instr(fb) + return variables_of_bexpr(c) | vbranches + case ILoop(cond=c,body=b): + return variables_of_bexpr(c) | variables_of_instr(b) + case _ : assert False diff --git a/TP3/tp.md b/TP3/tp.md new file mode 100644 index 0000000000000000000000000000000000000000..fabc311543f5397040f5eeec390b13df7c11be54 --- /dev/null +++ b/TP3/tp.md @@ -0,0 +1,110 @@ +# Analyse Statique de Programmes -- TP Analyse Statique + +CentraleSupélec + +Enseignant: Virgile Prevosto + +## Préliminaires + +Ce TP est la suite directe du [précédent](tp.md), et vise à implémenter une +analyse des signes et une analyse des intervalles en plus de la propagation de +constante vue précédemment. En particulier, il est impératif d'avoir terminé +l'implémentation du calcul de point fixe (c'est-à-dire avoir complété la +fonction `fixpoint_iteration` du fichier [`iteration.py`](config/iteration.py)) +pour pouvoir exécuter les exemples proposés dans ce TP. + +### Rappel Docker +L'image est ici: https://github.com/Frederic-Boulanger-UPS/docker-webtop-3asl et peut être utilisée soit localement, soit depuis `MyDocker`. De plus le répertoire `config` est monté automatiquement dans le container docker si vous utilisez les scripts associé ([PowerShell](https://github.com/Frederic-Boulanger-UPS/docker-webtop-3asl/blob/main/start-3asl.ps1) pour Windows ou [sh](https://github.com/Frederic-Boulanger-UPS/docker-webtop-3asl/blob/main/start-3asl.sh) pour Linux/macOS/BSD). Ces scripts devraient automatiquement ouvrir un onglet de votre navigateur web avec une session IceWM. Si ce n'est pas le cas, vous pouvez le faire manuellement: http://localhost:3000 + +NB: l'interpréteur Python est `python3` et non `python`. + +### Typage statique +Les fichiers proposés ont des annotations de types permettant de vérifier que +les programmes sont bien typés avant de les exécuter. On pourra utiliser +l'outil [`pyright`](https://microsoft.github.io/pyright/#/) pour la vérification. Il n'est pas présent sur l'image +Docker, mais peut s'installer via les commandes suivantes: +```sh +sudo apt update +sudo apt install pipx +sudo apt install pyright +``` + +Il dispose également d'un plugin vscode. + +## Treillis des signes + +Dans un premier temps, on va s'intéresser à l'analyse des signes telle que vue en cours. Le but de cet exercice est de +compléter le fichier [`sign_analysis.py`](config/sign_analysis.py). Les différentes valeurs possibles sont définies dans +l'énumération `sign`, complétée par un élément `Top()` (une erreur a pu avoir lieu, mais n'est pas certaine), et `None` qui +indique comme précédemment l'absence de résultat, c'est à dire le fait qu'on a certainement une erreur. Une variante de `Top()`, +`BTop(True|False)` sera utilisée pour l'évaluation abstraite des expressions booléennes. + +Comme pour la propagation de constante, les environnements abstraits sont des dictionnaires associant un `sign` à un nom de variable, +et un état est soit un environnement, soit `None` si on n'est jamais passé par le nœud correspondant. + +On se donne également les opérations de treillis sur les `sign` (relation d'ordre, `join` et `meet`, ce dernier pouvant renvoyer +`None`), ainsi que les opérations arithmétiques abstraites. + +### Évaluation des expressions + +Compléter les fonctions `eval_aexp` et `eval_bexp`, et interpréter les résultats affichés par +[`example_sign_eval_exp.py`](config/example_sign_eval_exp.py). + +NB: les opérations arithmétiques données travaillent uniquement sur des `sign`. C'est donc à `eval_aexp` de prendre en compte les +cas `None` et `Top`. + +### Réduction d'un état + +Compléter la fonction `reduce_state` qui étant donné un état et une expression booléenne essaie de réduire cet état sous l'hypothèse que +l'expression s'évalue à `True`. On pourra s'aider des fonctions définies au-dessus, qui prennent en argument un état, un nom de +variable `x`, et une expression arithmétique `expr`, et réduisent si possible la valeur associée à `x` en fonction de la comparaison +effectuée et de la valeur de `expr`. Le fichier [`example_sign_reduce.py`](config/example_sign_reduce.py) contient un certain nombre +de tests pour cette fonction. + +### Fonctions de transfert + +Compléter les fonctions de transfert de la classe `Sign_interp` et tester le résultat avec [`example_sign.py`](config/example_sign.py), +qui effectue l'analyse des signes pour le calcul de la factorielle + +## Treillis des intervalles, début + +On s'intéresse maintenant au treillis des intervalles. Le fichier [`interval_analysis.py`](config/interval_analysis.py) suit +la même structure que pour le treillis des signes, si ce n'est que les valeurs abstraites sont maintenant des objets de la classe +`Interval`, comportant deux champs, `lower_bound` et `upper_bound`, donc chacun peut être un entier ou `None`, ce qui indique qu'il +n'y a pas de borne. + +On demande cette fois-ci de compléter les fonctions `interval_add` (addition d'intervalles) et `interval_div` (division d'intervalle). +Pour `interval_div`, on pourra notamment utiliser les fonctions `is_zero` et `contains_zero` qui renvoient `True` si leur argument est +respectivement le singleton `0` ou un intervalle contenant `0`. On pourra ensuite tester ces fonctions avec +[`example_interval_eval_exp.py`](config/example_interval_eval_exp.py) + +Compléter ensuite les fonctions `reduce_eq`, `reduce_neq`, `reduce_leq` et `reduce_geq`, qui réduisent +la valeur d'une variable `x` sous l'hypothèse qu'elle est respectivement égale, différente, inférieure ou égale, ou supérieur ou égale à un entier donné. On pourra ensuite tester ces fonctions avec [`example_interval_reduce.py`](config/example_interval_reduce.py) + +## Ajout de l'élargissement + +Pour l'instant, notre fonction d'itération ne fait pas d'élargissement, donc l'analyse d'intervalle risque de ne pas terminer. +Modifier dans le fichier [`cfg.py`](config/cfg.py) la classe `LSkip` de manière à ce qu'elle ait un champ indiquant s'il s'agit +d'un arc de retour vers le nœud initial d'une boucle: + +```python +@dataclass +class LSkip(Label): + """label skip (does nothing)""" + is_back_edge: bool + def __str__(self): + return "skip" +``` + +Dans ce même fichier, mettez à jour `cfg_aux` pour créer des labels `LSkip` avec le booléen adéquat + +Modifier également le fichier [`iteration.py`](config/iteration.py) de la manière suivante: +- ajouter une fonction `widen` à la class `Transfer`, qui par défaut fait un simple `self.join` +- modifier `fixpoint_iteration` selon la version mise à jour de l'algorithme telle que montrée en cours. + +On pourra tester l'algorithme avec le fichier [`example_widen.py`](config/example_widen.py), dont l'analyse compte le nombre maximum +d'arêtes rencontrées depuis le début du programme. + +## Treillis des intervalles, version finale + +Compléter la fonction `widen` et les fonctions de transfert de la classe `Interval_analysis`, et faire l'analyse d'intervalle du calcul de la factorielle avec le fichier [`example_interval.py`](config/example_interval.py)