Forked from
Hudelot / CS_Coding_WEEKS_Tweeter_Analysis
This fork has diverged from the upstream repository.
-
joaopedrorosadacanesin authoredjoaopedrorosadacanesin authored
opinion.py 1.12 KiB
from collect_candidate_tweet_activity import *
from dataframe import *
from textblob import *
def categorize_tweets(data,neutral_line):
pos_tweets = []
neu_tweets = []
neg_tweets = []
for item in data["text"]:
try:
blob = TextBlob(item)
blob = blob.translate(to='en')
except:
blob = TextBlob(item)
polarity = blob.sentiment.polarity
print(blob)
print(polarity)
if polarity<=neutral_line and polarity >=-neutral_line:
neu_tweets.append(item)
elif polarity > neutral_line:
pos_tweets.append(item)
else:
neg_tweets.append(item)
return pos_tweets,neu_tweets,neg_tweets
tweets = get_replies_to_candidate("EmmanuelMacron")
data = convert_2_dataframe(tweets)
pos_tweets,neu_tweets,neg_tweets = categorize_tweets(data,0.1)
print("Percentage of positive tweets: {}%".format(len(pos_tweets)*100/len(data['text'])))
print("Percentage of neutral tweets: {}%".format(len(neu_tweets)*100/len(data['text'])))
print("Percentage de negative tweets: {}%".format(len(neg_tweets)*100/len(data['text'])))