Skip to content
Snippets Groups Projects
Commit bd0a5b9f authored by Hu Marilyne's avatar Hu Marilyne
Browse files

add files

parent 83682c67
Branches main
No related tags found
No related merge requests found
# Class_python
## Getting started
To make it easy for you to get started with GitLab, here's a list of recommended next steps.
Already a pro? Just edit this README.md and make it your own. Want to make it easy? [Use the template at the bottom](#editing-this-readme)!
## Add your files
- [ ] [Create](https://docs.gitlab.com/ee/user/project/repository/web_editor.html#create-a-file) or [upload](https://docs.gitlab.com/ee/user/project/repository/web_editor.html#upload-a-file) files
- [ ] [Add files using the command line](https://docs.gitlab.com/ee/gitlab-basics/add-file.html#add-a-file-using-the-command-line) or push an existing Git repository with the following command:
```
cd existing_repo
git remote add origin https://gitlab-student.centralesupelec.fr/marilyne.hu/class_python.git
git branch -M main
git push -uf origin main
```
## Integrate with your tools
- [ ] [Set up project integrations](https://gitlab-student.centralesupelec.fr/marilyne.hu/class_python/-/settings/integrations)
## Collaborate with your team
- [ ] [Invite team members and collaborators](https://docs.gitlab.com/ee/user/project/members/)
- [ ] [Create a new merge request](https://docs.gitlab.com/ee/user/project/merge_requests/creating_merge_requests.html)
- [ ] [Automatically close issues from merge requests](https://docs.gitlab.com/ee/user/project/issues/managing_issues.html#closing-issues-automatically)
- [ ] [Enable merge request approvals](https://docs.gitlab.com/ee/user/project/merge_requests/approvals/)
- [ ] [Set auto-merge](https://docs.gitlab.com/ee/user/project/merge_requests/merge_when_pipeline_succeeds.html)
## Test and Deploy
Use the built-in continuous integration in GitLab.
- [ ] [Get started with GitLab CI/CD](https://docs.gitlab.com/ee/ci/quick_start/)
- [ ] [Analyze your code for known vulnerabilities with Static Application Security Testing (SAST)](https://docs.gitlab.com/ee/user/application_security/sast/)
- [ ] [Deploy to Kubernetes, Amazon EC2, or Amazon ECS using Auto Deploy](https://docs.gitlab.com/ee/topics/autodevops/requirements.html)
- [ ] [Use pull-based deployments for improved Kubernetes management](https://docs.gitlab.com/ee/user/clusters/agent/)
- [ ] [Set up protected environments](https://docs.gitlab.com/ee/ci/environments/protected_environments.html)
***
# Editing this README
When you're ready to make this README your own, just edit this file and use the handy template below (or feel free to structure it however you want - this is just a starting point!). Thanks to [makeareadme.com](https://www.makeareadme.com/) for this template.
## Suggestions for a good README
Every project is different, so consider which of these sections apply to yours. The sections used in the template are suggestions for most open source projects. Also keep in mind that while a README can be too long and detailed, too long is better than too short. If you think your README is too long, consider utilizing another form of documentation rather than cutting out information.
## Name
Choose a self-explaining name for your project.
## Description
Let people know what your project can do specifically. Provide context and add a link to any reference visitors might be unfamiliar with. A list of Features or a Background subsection can also be added here. If there are alternatives to your project, this is a good place to list differentiating factors.
## Badges
On some READMEs, you may see small images that convey metadata, such as whether or not all the tests are passing for the project. You can use Shields to add some to your README. Many services also have instructions for adding a badge.
## Visuals
Depending on what you are making, it can be a good idea to include screenshots or even a video (you'll frequently see GIFs rather than actual videos). Tools like ttygif can help, but check out Asciinema for a more sophisticated method.
## Installation
Within a particular ecosystem, there may be a common way of installing things, such as using Yarn, NuGet, or Homebrew. However, consider the possibility that whoever is reading your README is a novice and would like more guidance. Listing specific steps helps remove ambiguity and gets people to using your project as quickly as possible. If it only runs in a specific context like a particular programming language version or operating system or has dependencies that have to be installed manually, also add a Requirements subsection.
## Usage
Use examples liberally, and show the expected output if you can. It's helpful to have inline the smallest example of usage that you can demonstrate, while providing links to more sophisticated examples if they are too long to reasonably include in the README.
## Support
Tell people where they can go to for help. It can be any combination of an issue tracker, a chat room, an email address, etc.
## Roadmap
If you have ideas for releases in the future, it is a good idea to list them in the README.
## Contributing
State if you are open to contributions and what your requirements are for accepting them.
For people who want to make changes to your project, it's helpful to have some documentation on how to get started. Perhaps there is a script that they should run or some environment variables that they need to set. Make these steps explicit. These instructions could also be useful to your future self.
You can also document commands to lint the code or run tests. These steps help to ensure high code quality and reduce the likelihood that the changes inadvertently break something. Having instructions for running tests is especially helpful if it requires external setup, such as starting a Selenium server for testing in a browser.
## Authors and acknowledgment
Show your appreciation to those who have contributed to the project.
## License
For open source projects, say how it is licensed.
## Project status
If you have run out of energy or time for your project, put a note at the top of the README saying that development has slowed down or stopped completely. Someone may choose to fork your project or volunteer to step in as a maintainer or owner, allowing your project to keep going. You can also make an explicit request for maintainers.
Ce répertoire concentre l'ensemble des fonctions qui me serait utile pour la suite de l'alternance, il est en cours de conception donc des changements peuvent souvent être apporter.
\ No newline at end of file
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import seaborn as sns
import xgboost as xgb
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import accuracy_score, classification_report, balanced_accuracy_score, roc_auc_score, precision_recall_curve, auc, confusion_matrix
import json
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import StandardScaler
import shap
from tqdm import tqdm
def shorten_cfa_name(name):
if len(name) > 30:
# Trouver le premier espace au milieu du texte
words = name.split()
mid = len(words) // 2
return " ".join(words[:mid]) + "\n" + " ".join(words[mid:])
return name
class XGBModel:
def __init__(self, X, y, objective, eval_metric, test_size=0.15, random_state=42):
self.X = X
self.y = y
self.test_size = test_size
self.random_state = random_state
self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(
X, y, test_size=self.test_size, random_state=self.random_state, stratify=y
)
neg, pos = np.bincount(self.y_train)
self.class_ratio = neg / pos
self.objective = objective
self.eval_metric = eval_metric
def corr_plot(self) :
corr_matrix = self.X.corr()
# On garde uniquement la moitié inférieure pour éviter les doublons
mask = np.tril(np.ones(corr_matrix.shape), k=-1).astype(bool)
corr_pairs = corr_matrix.where(mask)
# On sélectionne uniquement les corrélations égales à 1 (ou très proches de 1 à cause de la précision numérique)
correlated_vars = corr_pairs.stack().reset_index()
correlated_vars.columns = ['Variable_1', 'Variable_2', 'Correlation']
# On filtre les corrélations parfaites
perfect_corr = correlated_vars[correlated_vars['Correlation'] == 1.0]
print(perfect_corr)
fig , ax = plt.subplots(figsize = (30,20))
corr_matrix = self.X.corr()
sns.heatmap(corr_matrix, annot=False)
plt.show()
def grid_search(self, objective = "binary:logistic", eval_metric = 'logloss', cv = 3) :
param_grid = {
"n_estimators": [100, 500],
"learning_rate": [0.1, 0.05],
"max_depth": [3, 5, 7],
"subsample": [0.8, 1.0],
"colsample_bytree": [0.8, 1.0],
"reg_lambda": [0.5, 1],
"reg_alpha": [0, 0.5]
}
grid_search = GridSearchCV(
estimator=xgb.XGBClassifier(objective= objective, eval_metric= eval_metric),
param_grid=param_grid,
scoring="accuracy",
cv=cv, # Validation croisée à 3 folds
n_jobs=-1,
verbose=1
)
grid_search.fit(self.X_train, self.y_train)
self.best_params_ = grid_search.best_params_
self.best_model_ = grid_search.best_estimator_
return self.best_params_
def fit(self) :
if not hasattr(self, "best_params_"):
raise ValueError("grid_search() must be called before fit().")
else :
self.model = xgb.XGBClassifier(
objective=self.objective,
eval_metric=self.eval_metric,
n_estimators= self.best_params_['n_estimators'],
learning_rate=self.best_params_['learning_rate'],
max_depth=self.best_params_['max_depth'],
colsample_bytree = self.best_params_['colsample_bytree'],
reg_alpha = self.best_params_['reg_alpha'] ,
reg_lambda = self.best_params_['reg_lambda'],
subsample = self.best_params_['subsample'],
scale_pos_weight= self.class_ratio)
return self.model.fit(self.X_train, self.y_train)
def predict(self, X):
return self.model.predict(X)
def predict_proba(self, X):
return self.model.predict_proba(X)
def scoring(self) :
# Prédictions sur le jeu de test (probabilités pour ROC-AUC et PR-AUC)
self.y_pred = self.model.predict(self.X_test)
self.y_pred_proba = self.model.predict_proba(self.X_test)[:, 1] # Probabilité d'être classe 1
# Accuracy classique
accuracy = accuracy_score(self.y_test, self.y_pred)
balanced_acc = balanced_accuracy_score(self.y_test, self.y_pred)
# ROC-AUC score
roc_auc = roc_auc_score(self.y_test, self.y_pred_proba)
# PR-AUC (courbe Precision-Recall)
precision, recall, _ = precision_recall_curve(self.y_test, self.y_pred_proba)
pr_auc = auc(recall, precision)
# Matrice de confusion
conf_matrix = confusion_matrix(self.y_test, self.y_pred)
self.accuracy = accuracy
self.balanced_acc = balanced_acc
self.roc_auc = roc_auc
self.pr_auc = pr_auc
self.classification_report = classification_report(self.y_test, self.y_pred)
self.conf_matrix = conf_matrix
# Affichage des résultats
print(f"Accuracy: {accuracy:.2f}")
print(f"Balanced Accuracy: {balanced_acc:.2f}")
print(f"ROC-AUC Score: {roc_auc:.2f}")
print(f"PR-AUC Score: {pr_auc:.2f}\n")
print("Classification Report:")
print(self.classification_report)
print("Confusion Matrix:")
print(conf_matrix)
# ajouter les fonctions pour les visualisations
def plot_importance(self) :
fig, ax = plt.subplots(figsize = (8,10))
xgb.plot_importance(self.model, ax = ax, height=0.9, grid=False, color = '#FFBF66', max_num_features=20)
plt.show()
def shap_values(self) :
explainer = shap.TreeExplainer(self.model, approximate=True)
self.shap_values = explainer(self.X_train)
return self.shap_values
def get_corr_shap_df(self) :
corr_list = []
feature_list = self.X_train.columns
df_shap_values = pd.DataFrame(self.shap_values.values,
index = self.X_train.index,
columns = self.X_train.columns)
# get correlation
for feature in tqdm(feature_list) :
b = np.corrcoef(df_shap_values[feature],self.X_train[feature])[1][0]
corr_list.append(b)
# correlation by feature
df_corr = pd.concat([pd.Series(feature_list),pd.Series(corr_list)], axis = 1).fillna(0)
df_corr.columns = ['Variable','Corr']
# positive correlation in red and negative correlation in blue
df_corr['Color_sign'] = np.where(df_corr['Corr'] > 0,'green','red')
df_corr.loc[df_corr.Corr == 0,'Color_sign'] = 'grey'
# plot it
shap_abs = np.abs(df_shap_values)
df_shap_abs = pd.DataFrame(shap_abs.mean()).reset_index()
df_shap_abs.columns = ['Variable','SHAP_abs']
# mean shap + corr
df_corr_shap = pd.merge(df_shap_abs,df_corr, on = 'Variable')
df_corr_shap['Sign_all'] = np.sign(df_corr_shap['Corr']) # get mean sign of correlation for total
df_corr_shap = df_corr_shap.sort_values(by = 'SHAP_abs', ascending = False)
self.df_plot = df_corr_shap.iloc[0:12,:].sort_values(by = 'SHAP_abs', ascending = True)
self.df_plot['Variable'] = self.df_plot['Variable'].str.replace('_',' ')
self.df_plot['SHAP_abs_sign'] = self.df_plot['SHAP_abs'] * self.df_plot['Sign_all']
return self.df_plot
def plot_impact(self) :
#color_map = {'Positif' : '#DE2E4B', 'Négatif' :'#82CEF9'}
xlabel = 'Coefficient d\'impact'
colors = []
for value in self.df_plot['Corr'] :
if value > 0 :
colors.append('green')
elif value < 0 :
colors.append('red')
fig, ax = plt.subplots(figsize=(10,8))
bars = ax.barh(self.df_plot['Variable'].apply(shorten_cfa_name), self.df_plot['SHAP_abs_sign'], color=colors, height=0.9)
ax.set_xlabel(xlabel)
ax.tick_params(axis='y', labelsize=7)
#reste_index = self.df_plot[self.df_plot['index'] == f'{len(self.df_plot) - 20} autres variables'].index.values[0]
#bars[reste_index].set_hatch('//')
for n,bar in enumerate(bars) :
width = round(bar.get_width(),2)
text = str(width)
if colors[n] == 'green' :
ax.text(width*1.01, bar.get_y() + bar.get_height() / 2, text ,va='center', ha='left', color='green', fontsize=9)
else :
ax.text(width*1.01, bar.get_y() + bar.get_height() / 2, text ,va='center', ha='right', color='red', fontsize=9)
legend_elements = [
mpatches.Patch(facecolor='green', label='Positif'),
mpatches.Patch(facecolor='red', label='Négatif'),
]
ax.vlines(0,-1, self.df_plot.shape[0], color = 'black')
ax.set_xlim(min(self.df_plot['SHAP_abs_sign'])*1.2, max(self.df_plot['SHAP_abs_sign'])*1.3)
ax.legend(handles=legend_elements, loc='best', title='Impact sur la prédiction')
plt.title('Impact moyen des variables sur la prédiction (SHAP)', pad = 20, fontsize = 14)
plt.tight_layout()
plt.show()
\ No newline at end of file
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from matplotlib.colors import LinearSegmentedColormap, ListedColormap
import matplotlib.patches as mpatches
# partie sur les légendes à revoir
c_map = ['#000091', '#AB0345']
cmap = LinearSegmentedColormap.from_list("custom_cmap", c_map)
class plot_graph() :
def __init__(self,df, x, y, figsize = (10,6), ax = None, fig = None):
self.df = df
self.x = self.df[x]
self.y = self.df[y]
self.figsize = figsize
self.ax = ax
self.fig = fig
def barh_subplot(self, title = None, xlabel = None, ylabel = None,
path = None, yticklabels = None, xticklabels = None, colors = None,
legend_list = None, title_legend = None, show = True, force_new_fig= True,
legend_indices=None):
# couleurs des barres
if colors in self.df.columns and not self.df[colors].empty:
valid_colors = [c for c in self.df[colors] if not pd.isna(c)]
n_color = max(valid_colors) + 1
self.list_colors = cmap(np.linspace(0,1,n_color))
colors_bars = ['lightgray' if pd.isna(n) else self.list_colors[n] for n in self.df[colors]]
hatches = ['//' if pd.isna(n) else None for n in self.df[colors]]
elif colors is None :
self.list_colors = None
colors_bars = colors
hatches = None
# Tracer le graphique
if self.ax is None or self.fig is None or force_new_fig:
self.fig, self.ax = plt.subplots(figsize=self.figsize)
self.bars = self.ax.barh(self.y, self.x, color = colors_bars, hatch = hatches)
if legend_list and colors is not None:
legend_elements = []
# Toujours ajouter la légende pour les valeurs manquantes (None)
if any(pd.isna(c) or c is None for c in self.df[colors]):
legend_elements.append(mpatches.Patch(facecolor='lightgray', hatch='//', label='Indisponible'))
if legend_indices is None:
legend_indices = list(range(len(legend_list))) # toutes les légendes par défaut
for idx in legend_indices:
if idx < len(self.list_colors) and idx < len(legend_list):
legend_elements.append(mpatches.Patch(facecolor=self.list_colors[idx], label=legend_list[idx]))
self.ax.legend(handles=legend_elements, loc='best', title=title_legend)
if xticklabels is False :
self.ax.set_xticklabels([])
elif xticklabels is not None :
self.ax.set_xticklabels(xticklabels)
if yticklabels is False :
self.ax.set_yticklabels([])
elif yticklabels is not None :
self.ax.set_yticklabels(yticklabels)
self.ax.set_xlabel(xlabel)
self.ax.set_ylabel(ylabel)
self.ax.set_title(title, pad=30, color='black', fontsize=16)
self.ax.grid(axis='x', linestyle='-', alpha=0.2)
plt.tight_layout()
if show :
plt.show()
if path:
plt.savefig(path, dpi=500, bbox_inches='tight')
return self.fig
# partie à revoir selon les besoins des missions
def annotation(self, pourcentage = None, Nombre = None) :
if pourcentage and not Nombre :
for n, bar in enumerate(self.bars) :
width = bar.get_width()
text = self.df.loc[n,pourcentage]
self.ax.text(width * 1.01 if not np.isnan(width) else 0 , bar.get_y() + bar.get_height() / 2,
text, va='center', ha='left', color='gray', fontsize=9)
elif Nombre and not pourcentage :
for n, bar in enumerate(self.bars) :
width = bar.get_width()
text = self.df.loc[n,Nombre]
self.ax.text(width * 1.01 if not np.isnan(width) else 0 , bar.get_y() + bar.get_height() / 2,
text, va='center', ha='left', color='gray', fontsize=9)
elif Nombre and pourcentage :
for n, bar in enumerate(self.bars) :
width = bar.get_width()
text = f'{self.df.loc[n,Nombre]} ({self.df.loc[n,pourcentage]} %)'
self.ax.text(width * 1.01 if not np.isnan(width) else 0 , bar.get_y() + bar.get_height() / 2,
text, va='center', ha='left', color='gray', fontsize=9)
def encadrer(self) :
"""iscod_index = self.df[self.df['denomination_cfa'] == 'ISCOD'].index.values[0]
bars[iscod_index].set_edgecolor('black') # Couleur de la bordure
bars[iscod_index].set_linewidth(2) # Épaisseur de la bordure """
pass
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment