ST7 EI Aneo
To launch the program now, use :
mpiexec /np 12 python main2.py "--infile" deap_test.txt "--verbose"
For Linux
mpirun -np 12 python main2.py ""--infile"" deap_test.txt "--verbose"
--infile
Path to the files describing the problems. One file per problem
--indir
Run all problems inside the directory
--verbose
To see the training progress
--loops
Number of runs
For the first parallelisation method (one algorithm/multiple processor), use
main2.py
For the second parallelisation method (multiple algorithms/multiple processors), change for
main_sequential.py
in the command
Todo
-
meilleur algorithme d'affectations des tâches à partir de l'ordre topologique ?
-
scalability issue and parallelisation ideas
-
calculer les valeurs moyennes + confidence interval => hyperparameter better than another one if better values and no overlapping
parallelisation :
-
get a good idea of time repartition between tasks to reduce/parallelize to improve the performance
-
reduce the cardinality or complexity of the problem space if possible
Report
- Final version of the 2 reports : one less than 2 pages, short, the other one longer => temporary report on Wednesday, and the final one by Friday.
- Need to let the algorithm converge to a local minimum for the report